JORC 2004 Resources Converted to JORC 2012 Resources

ASX Announcement 10 July 2020

Black Cat Syndicate Limited ("**Black Cat**" or "**the Company**") is pleased to announce that the 2004 JORC Mineral Resources ("**2004 Resources**") recently acquired at the Fingals and Rowe's Find Gold Projects (see ASX announcements 28 May 2020 and 29 May 2020) have now been converted to 2012 JORC Mineral Resources ("**2012 Resources**"). Under ASX reporting guidelines, the 2004 Resources could only be stated once on acquisition (see announcement dated 28 May 2020) and this conversion was necessary in order to be able to continue to refer to these Resources.

HIGHLIGHTS

- JORC 2004 Resources converted to JORC 2012 Resources, bringing total reportable Resources to 8.7Mt @ 2.6 g/t Au for 711,000 oz.

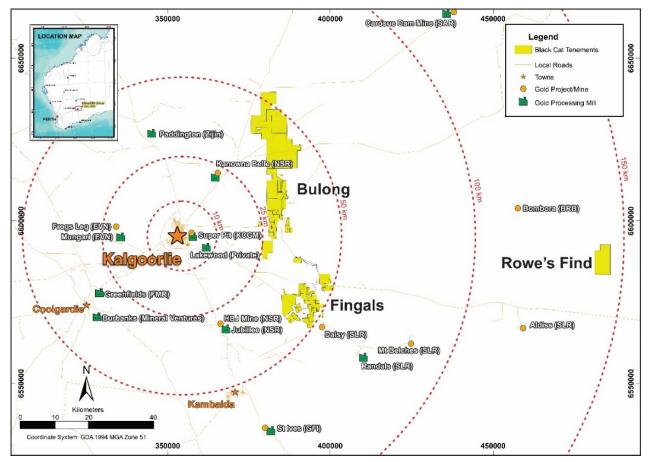


Figure 1: Black Cat's leases totalling 491km².

Black Cat's Managing Director, Gareth Solly, said: "We are pleased that we have converted the 2004 Resources acquired to 2012 Resources with no material difference identified. This now allows us to report these Resources under ASX guidelines. This exercise has also improved our understanding of the near-term growth potential of these Resources. We expect to make a detailed announcement regarding our drilling plans across the newly acquired projects in mid-July 2020."

BLACK CAT SYNDICATE LIMITED (ASX:BC8)

Suite 6, 16 Nicholson Road Subiaco WA 6008 PO Box 572, Floreat WA 6014 T | +61 458 007 713 E | admin@blackcatsyndicate.com.au W | www.blackcatsyndicate.com.au ABN | 63 620 896 282

DIRECTORS

Paul Chapman Non-Executive ChairmanGareth SollyManaging DirectorLes DavisNon-Executive DirectorAlex HewlettNon-Executive DirectorTony PolglaseNon-Executive Director

CORPORATE STRUCTURE

Black Co

Syndicate

Ordinary shares on issue: 96M Market capitalisation: A\$88M (Share price A\$0.915) Cash (31 Mar 2020): A\$3.7M

Fingals Fortune (M26/357, M26/148, M26/248, and M26/364) 100%

Fingals Fortune is contained on granted Mining Leases, having previously been mined in the early 1990's. Striking north-north-west and dipping shallowly to the west, the deposit is located 45km southeast of Kalgoorlie. Historical mining extracted approximately 0.42Mt @ 2.7 g/t Au for 37,000 oz from the main Fingals Fortune open pit and another 20,000 oz from three nearby satellite pits¹. The Resource is currently open along strike and at depth, with historic RAB drilling indicating potential strike extensions.

The Fingals Fortune 2004 Resource (see ASX announcement on 28 May 2020) has been converted to a 2012 Resource. No reinterpretation or estimation was completed during the conversion. The 2004 Resource was reviewed for interpretation (including a site visit), and the estimation was independently reviewed and validated by the competent person with no material issues identified. A full summary of the Resource methodology and validation is included in the relevant JORC tables attached to this announcement.

Figure 2: Photo looking at the north west wall of the Fingals Fortune open pit during the site visit. Low angle veining is clear within the pit walls.

During the conversion, the Indicated 2004 Resource was reclassified to an Inferred 2012 Resource. This is not considered to be a reflection on the quality of the 2004 Resource and is only a reflection of the stricter criteria applied under JORC 2012 (see supplemental information for a discussion on this decision process). With drilling, it is expected this material will be converted to an Indicated 2012 Resource.

Black C

Refer Mount Monger Gold Project – Exploration Data Summary Report, Mt Monger Tenement Area, Simon Coxhell January 1995 -WAMEX A number 45072.

Table 1: Total Inferred Fingals Fortune 2012 Resources by Potential Mining Method*

Fingals Fortune Resource	Cut-Off	Category	Tonnes	Grade	Contained Au
			'000 tonne	g/t	'000 ounces
Open Pit (<100m below surface)	1.0 g/t	Inferred	1,136	2.3	85
Underground (>100m below surface)	2.00 g/t	Inferred	38	2.8	3
Total Fingals Fortune			1,174	2.3	88

* Refer to Appendix 1 for a full Resource table grouped by Resource category. Small discrepancies may occur due to rounding.

Hammer and Tap (M26/352 and M26/834) 100%

The 2004 Resource at Hammer and Tap (see ASX announcement on 28 May 2020) has also been converted to a 2012 Resource. No reinterpretation or estimation was completed during the conversion. The 2004 Resource was reviewed for interpretation (including a site visit), and the estimation was independently reviewed and validated by the competent person with no material issues identified. A full summary of the Resource methodology and validation is included in the relevant JORC tables attached to this announcement.

Table 2: Total Inferred Hammer and Tap Resource by Potential Mining Method*

Hammer and Tap Resource	Cut-Off	Category	Tonnes	Grade	Contained Au
			'000 tonne	g/t	'000 ounces
Open Pit	1 g/t	Inferred	350	2.4	27
Total Hammer and Tap			350	2.4	27

* Refer to Appendix 1 for a full Resource table grouped by Resource category. Small discrepancies may occur due to rounding.

Rowe's Find (M28/0370 and M28/0164) 100%

The 2004 Resource at Rowe's Find (see ASX announcement 28 May 2020) has also been converted to a 2012 Resource. No reinterpretation or estimation was completed during the conversion. The 2004 Resource was reviewed for interpretation and the estimation was independently reviewed and validated by the competent person with no material issues identified. A full summary of the Resource methodology and validation is included in the relevant JORC tables attached to this announcement.

Black C

Rowe's Find Resource	Cut- Off	Category	Tonnes	Grade	Contained Au
			'000 tonne	g/t	'000 ounces
Open Pit	1.0 g/t	Inferred	148	3.5	17
Total Rowe's Find			148	3.5	17

* Refer to Appendix 1 for a full Resource table grouped by Resource category. Small discrepancies may occur due to rounding.

The 2004 Resource was originally calculated by Integra Mining Ltd in 2006. Through the conversion process, it was identified that densities greater than industry standard for the host rocks were used for transitional and fresh material. This approach may well be correct, but no supporting evidence could be located to show how Intergra Mining Ltd determined these densities at this time. Accordingly, to reflect a more cautious approach, densities were changed from 2.4 to 2.2 and 3.0 to 2.7 for transitional and fresh rocks respectively to better reflect industry standard density values. This resulted in a modest reduction in resources of 1,000 oz.

All Resources are viewed by Black Cat as potential mining opportunities. Drilling will be completed to convert the 2012 Resources from Inferred to Indicated so that mining studies can be completed. Drilling will also be planned for Resource extensions.

RECENT AND PLANNED ACTIVITIES

Black Cat continues to be extremely productive with recent and upcoming activities to include:

- **May-June 2020:** Black Hills and South Three acquisition and completion;
- May-July 2020: acquisition and completion of Fingals and Rowe's Find from Silver Lake Resources ("Silver Lake");
- July 2020: Myhree diamond drilling results;
- **July 2020:** Yarri East Acquisition from Newmont and RBR Group Ltd;
- July 2020: Bulong regional RC drilling results;
- **July 2020:** Fingals priority drilling plan;
- July 2020: 30 June 2021 JMEI tax credit allocation to be advised;
- July 2020: 30 June 2020 quarterly activities statements to be distributed to shareholders;
- August 2020: 30 June 2020 JMEI tax credit statements to be issued;
- August 2020: Myhree diamond drilling results;
- September 2020: Myhree Stage 2 Mining Proposal submission (including satellite pits at Boundary and Queen Margaret);
- September 2020: audited financial statements;
- September 2020: additional metallurgical testwork results; and
- September 2020 quarter: Myhree feasibility study.

Black C

For further information, please contact:

Gareth Solly Managing Director

+61 458 007 713 admin@blackcatsyndicate.com.au

This announcement has been approved for release by the Board of Black Cat Syndicate Limited.

COMPETENT PERSON'S STATEMENT

The information in this announcement that relates to geology and exploration results and planning was compiled by Mr Edward Summerhayes, who is a Member of the AusIMM and an employee and option holder of the Company. Mr Summerhayes has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Summerhayes consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The information in this release that relates to the Estimation and Reporting of Mineral Resources has been compiled by Mr Iain Levy. Mr Levy is a holder of shares and options in, and is a full-time employee, of the Company. Mr Levy is a Member of the Australasian Institute of Mining and Metallurgy and has sufficient experience with the style of mineralisation and deposit type under consideration, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code)'. Mr Levy consents to the inclusion in this report of the contained technical information relating the Mineral Resource Estimation in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

Information on historical results outlined in this Announcement together with JORC Table 1 information, is contained in the Independent Geologist's Report within Black Cat's Prospectus dated 27 November 2017, which was released in an announcement on 25 January 2018.

Geology and Geological Interpretation

Fingals is situated within Eastern Goldfields Province of the Archaean Norseman-Wiluna Greenstone Belt. The greenstone belt has been subdivided into a number of geological terrains separated by regional faults, including the Gindalbie Terrain, the Kurnalpi Terrain and the Edjudina/Linden Terrains. The NNE-trending, Mount Monger Fault transects the project area separating the Gindalbie Terrain in the northeast of the tenement group from the Kalgoorlie Terrain in the southwest.

The Gindalbie Terrain consists of a lower mafic to felsic volcanic sequence overlain by a thick ultramafic to mafic succession known as the Bulong Complex. The low angle, Hampton Fault is regarded as the contact between the two sequences. Both sequences have been folded into a broad, north south-plunging anticline (D2) known as the Bulong Anticline. The North Monger tenements overlie the western limb of the anticline and cover a greenstone succession comprising a komatiite dominated ultramafic association that contains thin interlayered felsic tuffs, underlain by younger calc-alkaline volcanic rocks with minor lenses of finer grained sediments.

Lithology

Fingals is situated along the axis of the Bulong Anticline, a major, upright, tight fold plunging towards the south-east. The geological sequence is comprised of mafic units of Hi-Mg basalts to pyroxenite gabbroic composition that occupy the core of the anticline, with bedding parallel intrusive dolerite sills and cross cutting quartz-feldspar porphyries.

The Fingals Fortune deposit is situated on the western limb of the Bulong Anticline dipping at ~30-40 degrees to the southwest. Hi-Mg pillow basalts are positioned in the footwall of the deposit and structurally separated from overlying dolerite sills and basalts by a structural disconformity represented by a series of bedding parallel shears.

Northwest striking quartz-feldspar porphyry dykes post-date the mafic sequence although they exhibit signs of shearing and thus occur prior to the regional axial planer foliation fabrics and greenschist metamorphism.

A deep weathering profile exists across the deposit down to 60m in places and displays supergene mineralisation above 35m that occurs as multiple, locally stacked, flatly west dipping mineralised shear sets associated with sericite schist and porphyry in mafic hosts.

Structure and Mineralisation

The bedding parallel shearing strikes at 315-320 degrees and display intense hydrothermal alteration with bleached sericite and pyrite with associated silicification and carbonate alteration. The shear zones anastomose with thicknesses ranging between 1–6m and are host to a series of stacked quartz veins containing mineralisation. The quartz veins within the shear zones are boudinaged with boudin necks plunging 60-70° to the northeast. Flat lying quartz veins are also developed as tensional structures between the thrust zones.

A north-east striking fault that postdates the west dipping sericite shear zones occurs within the middle of the Fingals Fortune pits. This coincides with a change in strike of the shear zones and is associated with elevated gold grades.

Black C

Figure 3: Plan image showing 2012 Resource mineralisation and drilling at Fingals Fortune.

Historic Workings

Modern mining was carried out by open pit in the early 1990's. A number of pits in the area were mined, including the Fingals Fortune pit where the 2012 Resource is located. While reconciled mined figures are not available, best guess estimates based off Reserve and grade control figures indicate that the pit produced 35,000-37,000 oz at between 2.7 g/t to 3.2 g/t Au. The current 2012 Resource has been depleted by the final mined pit shell.

Drilling Techniques

The majority of drilling at Fingals Fortune occurred in the late 1980's and early 1990's initially through RAB then followed by RC allowing Mistral Mines to define a Resource. Close spaced RC grade control drilling by the Mount Monger Joint Venture was completed over the mined area in 1991.

Since mining, RAB, RC and diamond drilling has been completed by Solomon Australia (1999-2000), AurionGold Exploration (2001-2002), Integra Mining (2007-2009 and 2011-2012), and Silver Lake (2012-2013). This drilling was generally of a small scale, with limited modern exploration completed in the 30 years since mining.

RAB holes were excluded from the Resource estimate.

Sampling and Sub Sampling Techniques

Mistral Mines completed the bulk of exploration drilling over Fingals Fortune in 1990 using a Schramm RC drill rig. All samples were collected from the cyclone in bags for each metre drilled.

Black C

Three metre composite samples were obtained by riffle splitting the 1m samples and combining into a 2kg composite sample. One metre samples were collected in bags from the cyclone and composited into a 2kg 3m composite sample using a riffle splitter. One metre resplit samples were taken where the 3m composite sample returned a grade above 0.2 g/t Au.

Analysis was completed at Classic Laboratories and Analabs in Kalgoorlie by fully pulverising the sample before splitting. A 50g charge was analysed by fire assay.

Mount Monger Joint Venture drilled the majority of the grade control drilling in 1991 using a $3^{7}/_{8}$ inch reverse circulation roller bit with a hammer and cross over sub for hard vein materials. Samples were bagged in 1m intervals and a 4m composite was collected by either riffle or spear sampling. Where assay values of greater than 0.2 g/t Au were recorded, the intervals were resplit using a riffle splitter and reassayed.

All samples were crushed, dried and pulverised and analysed using aqua regia digest with AAS finish due to check samples indicating fire assay produced similar results.

Integra Mining and Silver Lake sampling was completed in a similar manner with hole samples bagged on 1m intervals and composites of up to 4m completed. Anomalous intervals were then reassayed with the 1m samples.

Samples were tested in Genalysis Perth using a 10g charge and an aqua-regia digest with graphite furnace atomic absorption spectrometry finish

Criteria Used for Resource Estimation

At Fingals Fortune, the Resource is currently classified as Inferred. The previous JORC 2004 Resource was comprised of Indicated and Inferred. However, it is considered that Inferred is more appropriate based off the stricter JORC 2012 standards. While the majority of the Resource has closely spaced drilling, the historic nature of the drilling means that Indicated is not yet justified. However, there is sufficient confidence in the historic drilling when compared to modern drilling completed by Integra Mining and Silver Lake, along with reconciling past production figures to support a classification of Inferred. It is expected that once Black Cat has completed drilling at Fingals Fortune, the Indicated classification will be restored.

Over the history of Fingals Fortune, drilling has generally been completed at a dip of 60 degrees to the east, with most mineralisation drilled at approximately 20m by 20m, extending out to 50m by 50m at the extents of the model. Grade control has been completed over the mined area, extending beyond the pit extents slightly, with vertical holes spaced at 12.5m by 8m.

Estimation Methodology

Wireframes of weathering and mineralisation, guided by geological understanding, were constructed in Surpac software and validated in all orientations.

Drill hole data has been composited downhole to 1m within respective mineralisation domains using hard boundaries.

Top cuts were investigated for the deposit, with each domain assigned a top cut based off the individual population distribution.

Variograms were modelled for the major domains where a cohesive experimental variogram could be obtained. These variograms were then applied to similar domains if an acceptable variogram could not be modelled.

Black C

Variograms and the resultant search ellipses were orientated parallel to the observed dip and strike for each domain and confirmed from structural measurements in orientated diamond core where available.

The block model was constructed in Surpac with block sizes of 5m x 10m x 5m (x, y, z directions), based off drill hole spacing, with subblocks allowed down to 1.25m x 2.5m x 1.25m to honour model volumes. Estimation of the mineralised domains is completed using ordinary kriging into Parent Blocks. A number of smaller domains (17 of 57) were estimated by inverse distance squared due to their small sample numbers. The use of two methods is considered the most appropriate approach with respect to the observed continuity of mineralisation, spatial analysis and dimensions of the domains defined by drilling. A total of 57 total mineralised domains were modelled.

Bulk density values were applied according to regolith type and are based off historical density measurements of diamond core.

Validation steps of the Resource included the comparison of input assay data against the modelled grades. This was completed by, checking the global averages of each domain, visually checking the spatial distributions of grade, and assessing swath plots in the three major orientations.

Cut-Off Grades

The Resource is reported at a 1.0 g/t Au lower cut-off grade which is deemed acceptable based on approximate industry costings associated with open pit mining. Similarly, for underground mining, where a 2.0 g/t Au lower cut-off grade has been applied for all material below 100m from surface.

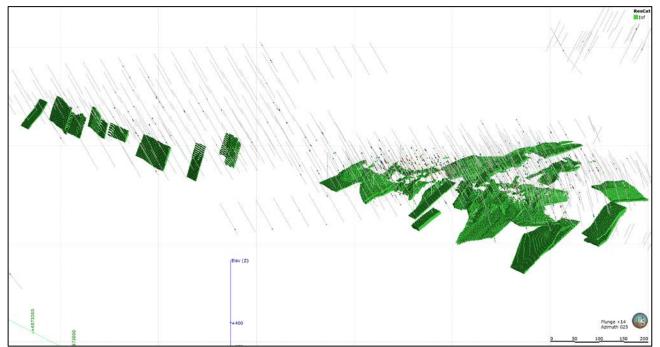


Figure 4: Oblique image looking NE showing Resource classification (green=Inferred) of the Fingals Fortune 2012 Resource.

Black C

Sv nd icat e

Mining and Metallurgical Parameters

No minimum width is applied to the Resource. Minimum widths are assessed and applied during the Reserve process. It is assumed that planned dilution is factored into the process at the stage of Reserve and pit planning.

No modern metallurgical work has been completed at Fingals Fortune since the completion of mining in the 1990s. At that time ore was processed through a conventional carbon and leach processing facility.

JORC 2012 Hammer and Tap Mineral Resource - Supporting Information

Geology and Geological Interpretation

Fingals is situated within Eastern Goldfields Province of the Archaean Norseman-Wiluna Greenstone Belt. The greenstone belt has been subdivided into a number of geological terrains separated by regional faults, including the Gindalbie Terrain, the Kurnalpi Terrain and the Edjudina/Linden Terrains. The NNE-trending, Mount Monger Fault transects the project area separating the Gindalbie Terrain in the northeast of the tenement group from the Kalgoorlie Terrain in the southwest.

The Gindalbie Terrain consists of a lower mafic to felsic volcanic sequence overlain by a thick ultramafic to mafic succession known as the Bulong Complex. The low angle, Hampton Fault is regarded as the contact between the two sequences. Both sequences have been folded into a broad, north south-plunging anticline (D2) known as the Bulong Anticline. The North Monger tenements overlie the western limb of the anticline and cover a greenstone succession comprising a komatiite dominated ultramafic association that contains thin interlayered felsic tuffs, underlain by younger calc-alkaline volcanic rocks with minor lenses of finer grained sediments.

Lithology

A zone of transported cover conceals the bedrock in the Hammer and Tap area, which consists of a dolerite that hosts the mineralisation. The area is bounded by felsic volcanics to the west, and ultramafic to the south and east.

A moderately shallow weathering profile exists across the deposit with oxide down to 40m in places. A transitional zone overlies fresh rock which occurs from 10m to 60m below surface

Structure

The dominant vein set observed within workings are subvertical quartz veins trending east-west. Much of the old workings that target primary mineralisation are also oriented in this orientation. In addition, oriented diamond core confirms this as a major vein set within fresh rock.

Mineralisation

Mineralisation is hosted within the dolerite in subvertical, east-west trending bucky sheeted quartz veins. These veins and the mineralisation appear to be truncated at depth by a black shale unit.

Black C

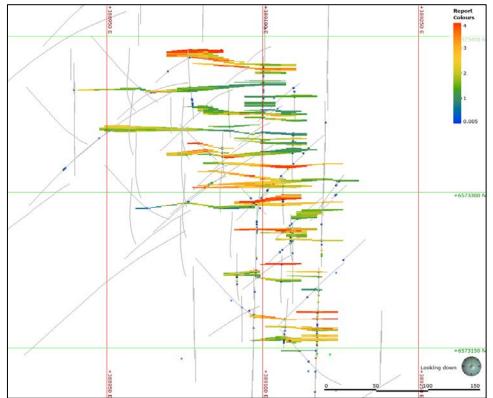


Figure 5: Plan image showing 2012 Resources mineralisation and drilling at Hammer and Tap.

Historic Workings

There are several old workings in the area consisting of small costines and trial pits, generally appearing to target paleo-alluvial gold. Along with these minor workings, are a several shafts that appear to target potential bedrock mineralisation. Mining appears to have occurred over a period of 30-100 years ago. One of the most significant workings is a small stope that expresses to surface after following a sub vertical east-west vein.

Figure 6: Photo looking due west into a small stope within historic workings that expresses at surface.

Drilling Techniques

Recorded drilling in the area has occurred since around 2001, with no clear history of drilling prior. Drilling consists of RC, RAB and diamond. Historic drilling has been completed by three companies being Anglo Gold Ashanti, Corona Minerals and Silver Lake. This drilling was validated by checking historic reports against the digital database.

RAB holes were excluded from the Resource estimate.

Sampling and Sub Sampling Techniques

Anglo Gold Ashanti collected the drill spoil direct from the cyclone in bags and laid in 10m lines. These bags were then riffle split into 1m samples and either 2m or 4m composites, with the composites being sent for analysis. No QAQC is detailed in the reports, however the reference to duplicates in discussions indicates at least a limited duplicate program was completed. Composites were sent to Analabs in Perth for analysis by fire assay with AAS finish. Anomalous zones were resubmitted at 1m sample size for the same analysis.

Cortona Resources split the drill spoil through the cyclone into plastic bags and an accompanying 1m sample into a calico bag. Four meters composite samples were collected by combining representative spear samples of the 1m drill spoils from the plastic bags. All 4m composite samples were assayed by the Amdel laboratory in Kalgoorlie. Samples were pulverized to >95% passing through a 75µm sieve. Gold was determined by aqua-regia digest with a standard AAS finish. Anomalous zones were resampled using the 1m splits in calico bags and assayed by the Amdel laboratory in Kalgoorlie. Samples were pulverized to >95% passing through a 75µm sieve. Gold was determined by aqua-regia digest with a standard AAS finish. Anomalous zones were resampled using the 1m splits in calico bags and assayed by the Amdel laboratory in Kalgoorlie. Samples were pulverized to >95% passing through a 75µm sieve. Gold was determined by 40g fire assay with a standard AAS finish. Limited standards were introduced into the process late in the drilling.

Silver Lake completed a similar process to those detailed above, using 40g fire assays with AAS finish.

Poor repeatability of results for samples 0-1.5 g/t Au was observed by Anglo Gold Ashanti. Investigation using screened fire assay confirmed a high degree of coarse gold present at Hammer and Tap. The coarse fraction, generally representing ~5% of the sample by weight, returned an average of 15 g/t Au with many samples exceeding 20 g/t Au, while the corresponding fine fraction returned an average grade of 1.5 g/t Au. This represents a risk and any further sampling work completed at Hammer and Tap will need to have the coarse gold taken into consideration with the preparation and analysis of the samples.

DD core from Anglo Gold Ashanti was orientated and sampled on 1m intervals. Analysis was completed by Analabs in Perth for analysis by fire assay with AAS finish.

Criteria Used for Resource Estimation

At Hammer and Tap, the Resource is currently classified as Inferred. The drill holes used for modelling and estimation consist of RC (56) and diamond (4).

Drilling has been completed in multiple orientations over the history of the deposit due to varying interpretations. In general, drilling is spaced between 30m to 50m apart. The two predominant directions of drilling are oriented at an azimuth of 50° degrees initially, switching to 180° later as understanding of the mineralisation developed.

Estimation Methodology

Wireframes of lithology, weathering and mineralisation were constructed in Surpac software and validated in all orientations.

Drill hole data has been composited downhole to 1m within respective mineralisation domains using hard boundaries.

Top cuts were investigated for the deposit and a single global cut of 13.5 g/t Au was selected to manage the impact of extreme values on the estimate.

Search ellipses were orientated parallel to the observed dip and strike for each domain and confirmed from structural measurements in orientated diamond core where available. Search ranges were selected based off geological interpretation.

The block model was constructed in Surpac with block sizes of $10m \times 1m \times 5m (x, y, z \text{ directions})$, based off drill hole spacing, with subblocks allowed down to $5m \times 0.5m \times 2.5m$ to honour model volumes. Estimation of the mineralised domains was completed using inverse distance squared into the Parent Blocks. This is considered an appropriate method based off the generally small number of samples per domain, with 53 total mineralised domains modelled.

Black C

Bulk density values were applied according to regolith type and are based off densities measured at similar deposits in the immediate area.

Validation steps of the Resource included the comparison of input assay data against the modelled grades. This was completed by, checking the global averages of each domain, visually checking the spatial distributions of grade and assessing swath plots in the three major orientations.

Cut-Off Grades

Resources are reported at a 1 g/t Au lower cut-off grade, which is standard for deposits in the area. No underground Resource was reported due to the relatively shallow nature of the mineralisation.

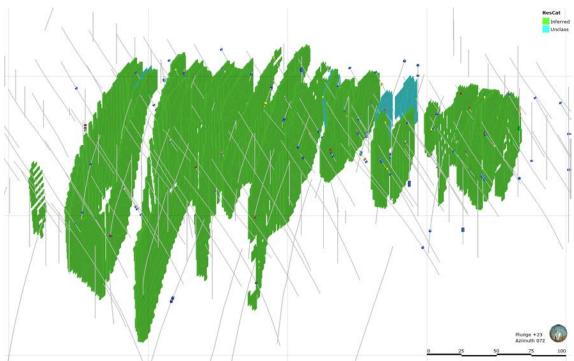


Figure 7: Oblique image looking NE showing resource classification (green=Inferred, blue=Unclassified) of the Hammer and Tap 2012 Resources.

Mining and Metallurgical Parameters

No minimum width is applied to the Resource. Minimum widths are assessed and applied during the Reserve process. It is assumed that planned dilution is factored into the process at the stage of Reserve and pit planning.

To date, no metallurgical work has been completed at Hammer and Tap, in line with the Resource Classification selected.

Black C

Geology and Geological Interpretation

The Rowe's Find Project area is located predominantly on the eastern edge of the Kurnalpi Terrane, generally characterised by ultramafic rocks in the west and an increase of mafic and felsic to intermediate volcanic rocks to the east. The mafic and felsic rocks generally display a more complex interleaving than in surrounding terrains.

Lithology

Within the Rowe's Find deposit, the dominant rock type is a medium-grained granitoid, with altered mafic rock referred to by the field term amphibolite. Biotite alteration of the amphibolite is widespread, and garnet is strongly developed in several zones. The amphibolite occurs as a shallow NW dipping lenses within the granitoid. Fine grained felsic intrusive and quartz porphyries cut this amphibolite sequence. Quartz-mica schist is common, with biotite schist less common, generally developed along the margins of the amphibolite lenes.

The entire deposit is obscured by a thin layer of Cainozoic sediments also obscuring any underlying geology. The sediments are interpreted to have been sourced locally from the underlying granitoid.

Structure and Mineralisation

Gold mineralisation is hosted in all rock types but is best developed within the amphibolite. Mineralisation is generally associated with strong biotite alteration and shearing, with the highest gold grades associated with pyrite and quartz veining. The highest grades and widest intercepts within the drilling to date appear to be associated with supergene enrichment.

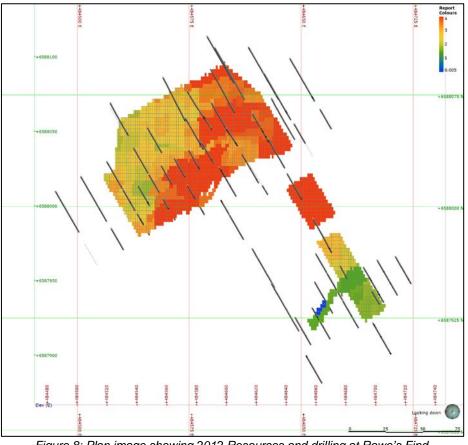


Figure 8: Plan image showing 2012 Resources and drilling at Rowe's Find.

Black C

Historic Workings

Rowe's Find was first worked by the prospector Harry Eldridge from 1978, with an estimated 40 tonnes mined from shallow trenches and underground for 12 oz at a grade of 9.3 g/t Au.

Drilling Techniques

The tenement was purchased by Julia Mines in 1987 with surface and underground sampling completed, along with a 20 hole RC program.

Freeport Exploration optioned the tenements in 1988, completing a 24 hole RC drilling program. The RC program was followed up in 1990 with a program of RAB drilling along with two diamond holes targeting fresh rock extensions of the mineralisation. A ground magnetic survey was also completed over the area. Julia Mines continued periodic exploration over the area until 2005 when Integra Mining acquired Rowe's Find.

Integra Mining completed a variety of work including two RC programs, a diamond program, geophysical surveys and estimated a JORC 2004 Resource using Cube Consulting in 2006. No on the ground exploration work has been completed since 2012.

RAB holes were excluded from the Resource estimate.

Sampling and Sub Sampling Techniques

Integra Mining's RC drilling was split by using a riffle splitter into 1m intervals. A laboratory split was collected in prenumbered calico bags, while the spoil was collected in large plastic bags and stored in lines of 20 bags. A 4m composite was collected from the spoil by spear sampling, with any anomalous composites (>0.2 g/t Au) having the corresponding 1m laboratory sample re-assayed.

Composites were analysed by 10g aqua-regia digest with AAS finish, while the 1m re-samples were analysed by 50g fire assay with AAS finish.

Historic drilling had all samples collected from the cyclone in bags for each metre drilled. The samples were obtained by riffle splitting the 1m samples into a 2kg composite sample.

Analysis was completed at by ALS using AAS finish.

Criteria Used for Resource Estimation

At Rowe's Find, the Resource is classified as Inferred. Drilling has been completed towards the south east, at a dip of 60 degrees. Spacing is variable, ranging from 10m by 10m out to 50m in places, generally at depth.

Estimation Methodology

Wireframes of weathering and mineralisation, guided by geological understanding, were constructed in Surpac software and validated in all orientations.

Drill hole data has been composited downhole to 2m within respective mineralisation domains using hard boundaries.

Top cuts were investigated for the deposit, with each domain assigned a top cut based off the individual population distribution.

Variograms were sourced from the nearby and geologically similar Harry's Hill deposit and were rotated to fit each domain. This approach was selected due to the limited number of samples within many of the domains.

Variograms and the resultant search ellipses were orientated parallel to the observed dip and strike for each domain and confirmed from structural measurements in orientated diamond core where available.

The block model was constructed in Surpac with block sizes of 10m x 10m x 5m (x, y, z directions), based off drill hole spacing, with subblocks allowed down to 2.5m x 5m x 2.5m to honour model volumes. Estimation of the mineralised domains is completed using ordinary kriging into Parent Blocks. This method is considered the most appropriate approach with respect to the observed continuity of mineralisation, spatial analysis and dimensions of the domains defined by drilling. A total of four mineralised domains were modelled.

Bulk density values were applied according to regolith type and are based off historical density measurements of diamond core.

Validation steps of the Resource included the comparison of input assay data against the modelled grades. This was completed by, checking the global averages of each domain, visually checking the spatial distributions of grade, and assessing swath plots in the three major orientations.

Cut-Off Grades

The Resource is reported at a 1.0 g/t Au lower cut-off grade which is deemed acceptable based on approximate industry costings associated with open pit mining. No underground Resource was estimated due to the shallow nature of the mineralisation defined at this time.

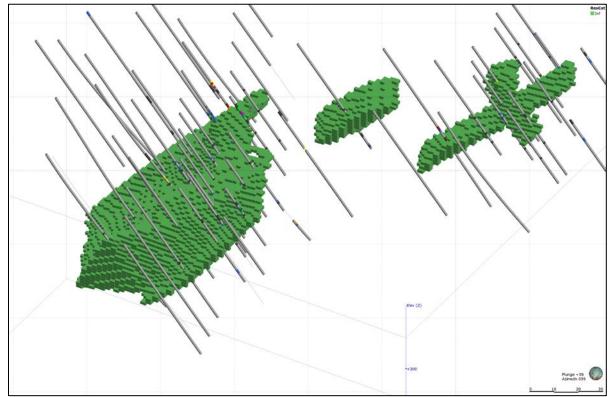


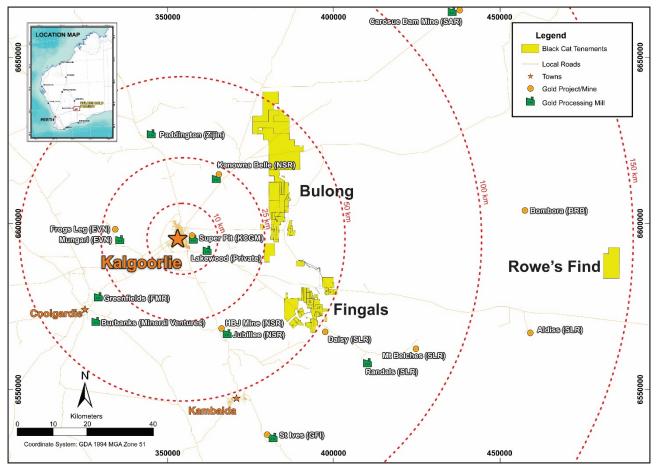
Figure 9: Oblique image looking NE showing the Rowe's Find 2012 Resources classification (green=Inferred).

Black C

Mining and Metallurgical Parameters

No minimum width is applied to the Resource. Minimum widths are assessed and applied during the Reserve process. It is assumed that planned dilution is factored into the process at the stage of Reserve and pit planning.

To date no metallurgical work has been completed at Rowe's Find, in line with the Resource classification selected.


ABOUT BLACK CAT SYNDICATE (ASX:BC8)

Black Cat controls 491km² of highly prospective tenements to the east of the world class mining centre of Kalgoorlie, WA. The three main project areas include:

- Bulong Gold Project ("Bulong"), including Yarri East, comprises ~350km² of land located 25-50km east of Kalgoorlie. The combined leases capture in excess of 45km of prospective stratigraphic and structural targets with minimal modern exploration. Advanced deposits undergoing mining studies along with early stage exploration opportunities exist throughout the Project;
- Fingals Gold Project ("Fingals") comprises ~100km² of land located ~30km south east of Bulong. This area contains multiple recently mined Resources and extensive areas of historic mining and limited modern exploration; and
- Rowe's Find Gold Project ("Rowe's Find") comprises ~41km² of land located ~100km east of Bulong. This project contains JORC 2004 Resources and drill ready targets on an overlooked greenstone belt.

Black Cat now has combined JORC 2012 Mineral Resources ("Resources") of 8.7Mt @ 2.6 g/t Au for 711,000 oz.

Existing infrastructure proximal to Bulong, Fingals and Rowe's Find presents significant opportunities for mining operations.

Regional map of Kalgoorlie showing the location of the Bulong, Fingals and Rowe's Find Gold Projects as well as nearby infrastructure.

The current in-situ, drill-defined and developed Resources for both Bulong, Fingals and Rowe's Find are listed below.

	Measure	d Mineral I	Resource	Indicated	d Mineral F	Resource	Inferred	Mineral R	esource	Total N	Mineral Re	source
Deposit	Tonnes ('000s)	Grade (g/t Au)	Metal (000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)
Bulong												
Queen Margaret OP	-	-	-	36	2.2	3	154	1.7	9	190	1.8	12
Queen Margaret UG	-	-	-	-	-	-	72	2.4	6	72	2.4	6
Melbourne United OP	-	-	-	-	-	-	67	2.8	6	67	2.8	6
Melbourne United UG	-	-	-	-	-	-	29	3.0	3	29	3.0	3
Boundary OP	-	-	-	124	2.2	9	351	1.9	21	475	2.0	30
Boundary UG	-	-	-	-	-	-	150	2.3	11	150	2.3	11
Trump OP	-	-	-	57	2.5	5	390	1.9	24	447	2.0	29
Trump UG	-	-	-	-	-	-	149	2.7	13	149	2.7	13
Myhree OP	-	-	-	580	3.6	67	572	3.1	58	1,152	3.4	125
Myhree UG	-	-	-	-	-	-	275	3.4	30	275	3.4	30
Anomaly 38 OP	-	-	-	-	-	-	295	1.5	14	295	1.5	14
Anomaly 38 UG	-	-	-	-	-	-	13	11.7	5	13	11.7	5
Strathfield OP	-	-	-	-	-	-	171	1.7	9	171	1.7	9
Strathfield UG	-	-	-	-	-	-	13	3.0	1	13	3.0	1
Sub Total	-	-	-	797	3.3	84	2,701	2.4	210	3,498	2.6	294
Fingals						•			•			
Majestic	-	-	-	1,673	2.6	142	790	2.3	58	2,463	2.5	200
Imperial	-	-	-	504	2.7	44	216	2.0	14	720	2.5	58
Fingals Fortune OP	-	-	-	-	-	-	1,136	2.3	85	1,136	2.3	85
Fingals Fortune UG	-	-	-	-	-	-	38	2.8	3	38	2.8	3
Wombola Dam	13	3.2	1	164	2.6	14	120	3.0	12	297	2.8	27
Hammer and Tap OP	-	-	-	-	-	-	350	2.4	27	350	2.4	27
Sub Total	13	2.4	1	2,341	2.7	200	2,650	2.3	199	5,004	2.5	400
Rowe's Find												
Rowe's Find	-	-	-	-	-	-	148	3.5	17	148	3.5	17
Sub Total	-	-	-	-	-	-	148	3.5	17	148	3.5	17
TOTAL MINERAL RESOURCE	13	3.2	1	3,138	2.8	284	5,499	2.4	426	8,650	2.6	711

The preceding statements of Mineral Resources conforms to the 'Australasian Code for Reporting of Exploration Results Mineral Resources and Ore Reserves (JORC Cod 2012 Edition'. All tonnages reported are dry metric tonnes. Minor discrepancies may occur due to rounding to appropriate significant figures.

Notes on Resource table for Bulong, Fingals and Rowe's Find:

- 1. Data is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding.
- 2. The Resource estimates are produced in accordance with the 2012 Edition of the Australian Code for Reporting of Mineral Resources and Ore Reserves (the "2012 JORC Code")
- 3. All tonnages are reported in dry metric tonnes.
- 4. Resources have been reported as both open pit and underground with varying cut-offs based off a number of factors discussed in the corresponding Table 1 which can be found with the original ASX announcements for each Resource.
- 5. The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Resources are:
 - a. Queen Margaret Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong";
 - b. Melbourne United Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong";
 - Boundary Black Cat ASX announcement on 23 September 2019 "Strong Resource Upgrades at Satellites to Myhree";
 - d. Trump Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz";
 - e. Myhree Black Cat ASX announcement on 18 February 2020 "Myhree Resource Increases to 155,000 oz @ 3.4 g/t Au";
 - f. Anomaly 38 Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz";
 - g. Strathfield Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz";
 - h. Majestic Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources Strategic Transaction with Silver Lake";
 - i. Imperial Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources Strategic Transaction with Silver Lake";
 - j. Fingals Fortune Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources";
 - k. Wombola Dam Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources Strategic Transaction with Silver Lake";
 - I. Hammer and Tap Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources"; and
 - m. Rowe's Find Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources".
- 6. 2004 JORC Resources at the Fingals Gold Project have been excluded from the table to comply with ASX reporting criteria. Please see ASX announcement dated 28 May 2020 for further information. Black Cat will undertake work to convert all 2004 JORC Resources to 2012 JORC Resources in due course.

Black C

JORC 2012 Table 1 for Fingals Fortune Mineral Resource

Section 1: Sampl	ing Techniques and Data	
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drilling has been completed by numerous parities over the life of the project. Air core, RAB, reverse circulation, and diamond drilling have all been completed.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	The majority of drilling was completed during the 1980's and early 1990s by Mistral Mines and the Mount Monger Gold Project JV. There is no reference to QAQC reported in annual reports for this period. Follow up drilling by Integra and Silver Lake indicate similar grades intercepted with acceptable QAQC reported.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g	Mistral Mines completed the bulk of exploration drilling for the Fingals Resource in 1990 using a Schramm RC drill rig. All samples were collected from the cyclone in bags for each metre drilled. Three metre composites samples were obtained by riffle splitting the 1m samples and combining into a 2kg composite sample. One metre samples were collected in bags from the cyclone and composited into a 2kg 3m composite sample using a riffle splitter. 1m resplit samples were taken where the 3m composite sample returned a grade above 0.2 g/t Au.
charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems.	Analysis was completed at Classic Laboratories and Analabs in Kalgoorlie by fully pulverising the sample before splitting. A 50g charge was analysed by fire assay.	
	Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Mount Monger Gold Project drilled the majority of the grade control drilling in 1991 using a $3^{7}/_{8}$ inch reverse circulation roller bit with a hammer and cross over sub for hard vein materials. Samples were bagged in 1m intervals and a 4m composite was collected by either riffle or spear sampling. Where assay values of greater than 0.2 g/t Au were recorded, the intervals were re-split using a riffle splitter and re-assayed.
		All samples were crushed, dried and pulverised and analysed using aqua regia digest with AAS finish due to check samples indicating fire assay produced similar results.
		Integra and Silver Lake sampling was completed in a similar manner with holes samples bagged on 1m intervals and composites of up to 4m completed. Anomalous intervals were then reassayed with the 1m samples.
		Samples were tested in Genalysis Perth using a 10g charge and an aqua-regia digest with graphite furnace atomic absorption spectrometry finish.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer,	Reverse circulation drilling was completed using a face sampling percussion hammer.
rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond	Diamond drilling was oriented and logged geotechnically.	
	tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Historical reverse circulation drilling size is unknown.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Mount Monger Gold Project annual reports state that RC drilling at Fingals Fortune was dry with good recovery and no issues observed. There is no discussion of recovery for Integra and Silver Lake drilling.

Section 1: Sampli	ng Techniques and Data	
Criteria	JORC Code Explanation	Commentary
		Diamond core was geologically and geotechnically logged with core loss noted during this process.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Sample representativity was checked through the use of duplicates with acceptable results from Integra and Silver Lake. Repeats of assays for Mistral Mines did not indicate any issues.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade for drilling completed at Fingals Fortune.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	Logging of reverse circulation chips record lithology, mineralogy, texture, mineralisation, weathering, colour, alteration, veining and structure.
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Diamond core was geologically logged and sampled by for lithology, mineralogy, texture, mineralisation, weathering, colour, alteration, veining and structure.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	No historic core or chips are available.
	The total length and percentage of the relevant intersections logged	All relevant drilling has been logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	The historical sampling method for diamond core is not discussed in the annual reports. Diamond core represents a very small percentage of the overall samples used in the Mineral Resource. It is not considered to have a material impact on the global estimate presented.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All samples were bagged from the rig. Integra and Silver Lake samples were split on the rig, while Mistral and Mount Monger used a riffle splitter to take the 1m samples. Composites were created through both riffle splitters and spear sampling.
		There sampling was generally dry as per Mount Monger's annual reports.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The laboratory preparation of samples adheres to industry best practice. It is conducted by a commercial laboratory and involves oven drying, coarse crushing then total grinding.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All subsampling activities are carried out by commercial laboratory and are considered to be satisfactory.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	Integra Mining and Silver Lake used field duplicate samples to check the representativity of sampling. These were submitted for the same assay process as the original samples and the laboratory are unaware of such submissions. Mistral Mines had repeats completed with no issues identified in the review of the data.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes of between 2-3kg are considered to be appropriate for the deposit.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All samples are analysed by an external laboratory. Mistral Mines used a 50g fire assay, Mount Monger used aqua regia digest with AAS finish due to check samples indicating fire assay produced similar results, and Integra Mining used 10g charge and an aqua-regia digest with graphite furnace atomic absorption spectrometry finish.
		These methods re considered suitable for determining gold concentrations in rock and are a total digest method.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used in this Mineral Resource.

Section 1: Samplin	ng Techniques and Data	
Criteria	JORC Code Explanation	Commentary
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision	Integra Mining and Silver Lake had a full QAQC program, with standards, blanks and field duplicates submitted with each batch of samples. There have been no issues observed within the QAQC data.
	have been established.	Historic drilling had limited QAQC completed, limited to repeats of assays. Results were compared to close by modern drill holes and were similar in grade.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts are verified by database, geological and corporate staff.
	The use of twinned holes.	Diamond twinning has not been completed at this point. Close spaced drilling through the mined portion at grade control spacing provides insight into the continuity of mineralisation at short distance.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Data has been reviewed from the digital file to the hard copies of annual reports with limited errors observed at this point.
	Discuss any adjustment to assay data.	No adjustments have been made to the assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Survey control for Mistral and Mount Monger's drilling is not discussed in the annual reports and represents a risk to the Mineral Resource which is reflected in the classification.
	Specification of the grid system used.	Mistral and Mount Monger operated on local grid for the Mount Monger area (SOL) that has been converted to MGA 94 Zone 51 for estimation. Integra Mining and Silver Lake worked in MGA 94 Zone 51. All reported references are in MGA 94 Zone 51.
	Quality and adequacy of topographic control.	Topography has been defined by a topographic survey of the area, with all collars corrected to the surface for consistency in elevation during estimation.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The nominal spacing ranges from 12.5m (northing) by 8.5m (easting) within the grade controlled area (mostly mined) to 50m by 50m at the extremities of the deposit.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	It is sufficient.
Orientation of data in relation to geological structure	Whether sample compositing has been applied.	Drill hole data has been composited downhole to 1m prior to the geostatistical analysis, continuity modelling and grade estimation process. The compositing has been run within the respective mineralisation domains using these as hard boundaries.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Exploration drilling has generally been drilled towards the east at -60 to intersect the mineralised zones, with a couple of holes drilled in different orientations. Grade control drilling (mostly now mined out) was drilled vertically. These orientations are acceptable given the low angle of dip the mineralisation has.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	All drilling from surface has been drilled as close to perpendicular to the predicted orientation of stratigraphy as possible. This has reduced the risk of introducing a sampling bias as far as possible. No orientation-based sampling bias has been identified in the data at this point.
Sample security	The measures taken to ensure sample security.	The sample security of the historic drilling in unknown but is expected to have been acceptable.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of all available information on sampling and procedures used from annual reports has been reviewed in converting this Mineral Resource.

Black Cat

ources	ng of Exploration Results (Criteria listed in the	Black Cat Syndicate
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land		The Fingals Fortune Mineral Resource is located on M26/357, M26/148, M26/248, and M26/364.
enure status	including agreements or material issues with third parties such as Joint Ventures, partnerships, overriding royalties,	Mining lease M26/248 is granted is held until 2029 and is renewable for a further 21 years on a continuing basis.
	native title interests, historical sites, wilderness or national	Mining lease M26/148 is granted is held until 2030 and is renewable for a further 21 years on a continuing basis.
	park and environmental settings.	Mining leases M26/357 and M26/364 are granted are held until 2033 and are renewable for a further 21 years on a continuing basis.
		All production is subject to a Western Australian state government Net Smelter Return ("NSR") royalty of 2.5%.
	M26/357 may be subject to a royalty of either \$1.5/ore tonne or 0.1 gt Au/ore tonne for 30% of ore that is treated or sold from the tenement.	
	There are no registered Aboriginal Heritage sites or pastoral compensation agreements over the tenements.	
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediment to obtaining a licence to operate exists and the tenements are in good standing.
-xploration done by other	Acknowledgment and appraisal of exploration by other	Fingals Fortune was first identified by Geopeko in joint venture with Mistral Mines in 1983-1984 through a

southeast. The geological sequence is comprised of mafic units of Hi-Mg basalts to pyroxenite gabbroic

	with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Fingals Fortune was first identified by Geopeko in joint venture with Mistral Mines in 1983-1984 through a systematic soil geochemical sampling program. This was followed up with costeans, RAB and RC drilling. Geopeko did not perceive the discoveries to be of sufficient size and withdrew from the joint venture in 1986. Mistral Mines continued to explore and define Fingals Fortune, producing a feasibility study in the 1990.
		During this time, the tenement directly south of Fingals Fortune (now M26/357) was lost to Mistral though an administrative error resulting in the pegging by a prospector.
		Following Mistral Mines falling into receivership, the project was acquired by Ramsgate Resources, who formed the Mount Monger Gold Project JV with General Gold in 1991. M26/357 was repurchased from Bond Gold Australia and Dragon Resources in 1992.
		The Fingals Fortune deposit was subsequently mined in 1992 and 1993 by the Mount Monger Gold Project JV, with minor exploration around the area continuing until divestment.
		Since mining was completed, Exploration of the Fingals Fortune deposit has been sporadic with various companies drilling holes to test the potential of reopening the mine:
		- Solomon Australia (1999-2000) drilled about 10-15 RC holes to test strike extensions on the mineralisation;
		 AurionGold Exploration (2001-2002) drilled a couple of RC and diamond holes testing under the existing pit; Integra Mining drilled two campaigns in 2007-2009 and 2011-2012 testing mineralisation east of and also below the main pit; Silver Lake drilled four holes in 2012-2013 testing southern extensions to the mineralisation.
Geology	Deposit type, geological setting and style of mineralisation.	The project area is situated along the axis of the Bulong Anticline, a major, upright, tight fold plunging towards the

Section 2: Reporti	Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)				
Criteria	JORC Code Explanation	Commentary composition that occupy the core of the anticline, with bedding parallel intrusive dolerite sills and cross cutting quartz-feldspar porphyries.			
		The Fingals Fortune deposit is situated on the western limb of the anticline dipping at ~30-40 degrees to the southwest. Hi-Mg pillow basalts are positioned in the footwall of the deposit and structurally separated from overlying dolerite sills and basalts by a structural disconformity represented by a series of bedding parallel shears.			
		The shearing strikes at 315-320 degrees and display intense hydrothermal alteration with bleached sericite and pyrite with associated silicification and carbonate alteration. The shear zones anastomose with thicknesses ranging between $1m - 6m$ and are host to a series of stacked quartz veins that host mineralisation. The quartz veins within the shear zones are boudinaged with boudin necks plunging 60-70° to the northeast. Flat lying quartz veins are also developed as tensional structures between the thrust zones.			
		Northwest striking quartz-feldspar porphyry dykes post-date the mafic sequence although they exhibit signs of shearing and thus occur prior to the regional axial planer foliation fabrics and greenschist metamorphism.			
		A northeast (070°) striking fault that postdates the west dipping sericite shear zones occurs within the middle of the Fingals Fortune pits. This coincides with a change in strike of the shear zones and is associated with elevated gold grades.			
		A deep weathering profile exists across the deposit down to 60m in places and displays supergene mineralisation above 35m that occurs as multiple, locally stacked, very flatly west dipping mineralised shear sets associated with sericite schist and porphyry in mafic hosts.			
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length; and if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A table of significant intercepts for all exploration or resource definition drilling is included in this announcement for all drilling relevant to this Mineral Resource and announcement. As this was an actively mined area, it is impractical to list drilling information for all drill holes used. For this reason, grade control drilling results are not reported.			
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually Material and should be stated.	All aggregated zones are length weighted. No high-grade cuts have been used, except for Resource estimation as discussed in the text.			

Black Cat Syndicate	
Syndicate	

Section 2: Report	ing of Exploration Results (Criteria listed in the	preceding section also apply to this section.)
Criteria	JORC Code Explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All intersections are calculated using a 1 g/t Au lower cut-off with maximum waste zones between grades of 1m.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, as no metal equivalent values have been reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	All intercepts are reported as downhole depths as true widths are not yet determined.
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration.	All results have been tabulated in this announcement.
	Results are not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geophysical surveys including aeromagnetic surveys have been carried out by previous owners to highlight and interpret prospective structures in the project area. No geophysics was used in the production of the Mineral Resource.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling).	Black Cat plans to conduct an exploration program to confirm the current interpretation and target extensions to the currently modelled mineralisation.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	

Criteria	JORC Code Explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Data has been stored in an SQL server database. Historic data has been provisionally checked against hard copies of the data as reported in annual reports to the Department of Mines and Petroleum.
	Data validation procedures used.	
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The Competent Person has undertaken a site visit on 17/06/2020. While drilling has not been completed at Fingals since 2012 and so was not observed, the current pit has been inspected and the geology and mineralogical
	If no site visits have been undertaken indicate why this is the case.	interpretation verified against observations within the pit walls.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The resource categories assigned to the model directly reflect the confidence of the geological interpretation that is built using local, structural, mineral, and alteration geology obtained from geophysics, logging, drilling results and
	Nature of the data used and of any assumptions made.	mapping.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The geological interpretation of Fingals Fortune has considered all available geological information. RC and Diamond drilling was used during interpretation with the exclusion of RAB and AC due to the lack of confidence in the technique for modelling and estimation.
	The use of geology in guiding and controlling Mineral Resource estimation.	Mineralisation was modelled in three main structures based off the geological interpretation; The main zone is hosted within felsic porphyry, with a basal thrust zone appearing to enrich grades. There are also flatter echelon
	The factors affecting continuity both of grade and geology.	structures to the north and east of the main zone.
		Wireframes of the mineralisation were constructed using cross sectional interpretations based on a 0.5 g/t Au cut- off grade with no minimum downhole length. If there were found to be contradictions between different phases of drilling by different companies, some holes with <0.5 g/t were included for the sake of geological continuity.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource	The Fingals Resource area extends over a strike length of 630m (from 6,573,010mN to 6,573,640mN) and includes the vertical extent of 170m from 390mRL to 220mRL. The area includes the material below the Fingals open pits. There are extensions included in the Fingals resource that go a further 900m to the north
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from	Gold grade was estimated using Surpac and was completed using ordinary kriging and inverse distance squared for some of the smaller domains with limited sampling. It was considered that a more robust geological model with smoother and more continuous mineralised lodes will reduce the effects of higher CV. Estimation was carried out on the parent cell.
	data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Variograms were generated using composited drill data in Snowdon Supervisor software. The five major domains were analysed with variogram parameters assigned to similar domains.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral	Search ellipse dimensions and orientation reflect the parameters derived from the variography and geological analysis.
	Resource estimate takes appropriate account of such data.	Only Au grade was estimated. No other elements were estimated.
	The assumptions made regarding recovery of by-products.	

Criteria	JORC Code Explanation	Commentary
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine	No deleterious elements were estimated or assumed. Preliminary environmental testing indicates no deleterious elements in the deposit.
	drainage characterisation). In the case of block model interpolation, the block size in	Block sizes were selected based on drill spacing and the thickness of the mineralised veins at 5m (east) by 10m (north) by 5m (z). Sub blocking down to 1.25/2.5/1.25 to honour estimation domain volumes was utilised.
	relation to the average sample spacing and the search employed.	Average drill spacing ranges from 12.5m x 8m in mined portion, down to 50m x 50m at mineralisation depths and extents.
	Any assumptions behind modelling of selective mining units.	No selective mining units were assumed in the resource estimate.
	Any assumptions about correlation between variables.	Blocks were generated within the mineralised volumes that defined each mineralised zone. Blocks within these
	Description of how the geological interpretation was used to control the resource estimates.	zones were estimated using data that was contained with the same zone. Hard boundaries were used for all domains.
	Discussion of basis for using or not using grade cutting or capping.	Top cuts were applied to the data to control the effects of extreme high grade Au values that were considered not representative. The effect of the top cuts was reviewed with respect to the resulting Population distribution and fragmentation, mean and CV values.
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	The model was validated by comparing statistics of the estimated blocks against the composited sample data; visual examination of the block grades versus assay data in section; swathe plots; and reconciliation against previous production and estimates.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content	All estimations are carried out on a 'dry' basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The indicative cut-off grade of 1.0 g/t Au for the Mineral Resource estimation is determined by the assumption that mining Fingals Fortune will be a small to mid-sized open pit operation to approximately 100m below surface. Material below base of pit RL (290m abs) has been reported at 2.0 g/t under the assumption of underground mining operations.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the	No minimum width is applied to the Resource. Minimum widths are assessed and applied using Whittle and Mining Shape Optimiser software during the Reserve process.
	process of determining reasonable prospects for eventual economic extraction to consider potential mining methods.	It is assumed that planned dilution is factored into the process at the stage of Reserve and stope design planning.
	but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not	The pit depth was determined based assessment of other pits within the area and a reasonable expectation of any mining potentially involving a cutback of the current pit.
	always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	There is currently approximately 500,000m ³ of rock backfill and tailings within the northern pit that will need to be considered for any cut back to the current open pit.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of	Assumed the material will be trucked and processed at a toll treat gold plant. Recovery factors are assigned based on lab test work, and on-going experience.
	the process of determining reasonable prospects for eventual economic extraction to consider potential	No metallurgical assumptions have been built or applied to the Resource model.

Criteria	JORC Code Explanation	Commentary
	metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	A conventional storage facility is used for the process plant tailings. Waste rock is to be stored in a traditional waste rock landform 'waste dump'. There is no evidence from previous mining to indicate the presence of deleterious elements within the Fingals Fortune deposit.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Bulk density is assigned based on regolith. Values of 1.80, 2.20 and 2.70 t/m ³ are used for oxide, transitional and fresh waste rock respectively. Bulk density values were taken from historic test work and correlate well with results from other areas in the region with similar geology. Further work on density will be completed as the project progresses Density values are allocated uniformly to each regolith type.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	There is no Measured or Indicated mineral resources at Fingals Fortune. The Mineral Resource is currently classified as Inferred. While previously reported under JORC 2004 as Indicated and Inferred, it is felt that Inferred is more appropriate based off JORC 2012 standards. While the majority of the Mineral Resource has closely spaced drilling, the historic nature of the drilling means that Indicated is not justified. There is enough confidence in the historic drilling when compared to modern drilling completed by Integra Mining and Silver Lake, along with reconciling past production figures to support a classification of Inferred. It is expected that once Black Cat has completed drilling at Fingals Fortune, the Indicated Mineral Resource classification will be restored. The classification of the Mineral Resource estimate appropriately reflects the view of the Competent Person.

Section 3: Estima	Section 3: Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)		
Criteria	JORC Code Explanation	Commentary	
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The geological interpretation, estimation parameters and validation of the Resource model were peer reviewed by Black Cat staff prior to accepting the responsibility for the Mineral Resource. No external reviews of the Resource estimate had been carried out at the time of writing.	
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	No external reviews of the Resource estimate had been carried out at the time of writing. The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. The statement relates to the global estimates of tonnes and grade above an RL selected from the base of an optimisation pit shell at a 1.0 g/t Au cut-off and 2.0 g/t Au below the pit. The estimated uncertainty for an Indicated Resource is typically +/- 20%. The Mineral Resource was compared to the historical estimates reported (no reconciled figures for Fingals Fortune were located). The reserve model pre mining in 1990 was reported at 0.34Mt @ 3.2 g/t Au for 35,000 oz, with the corresponding grade control model reporting 0.42Mt @ 2.7 g/t Au for 37,000 oz. With the limited documentation on how these figures were modelled, the current estimate of mined material at a 1g/t Au cut-off of 0.33Mt @ 3.5 g/t Au for 38,000 oz is considered to reconcile acceptably to these figures.	

Black Cat

JORC 2012 Table 1 for Hammer and Tap Mineral Resource

Section 1: Samp	Section 1: Sampling Techniques and Data		
Criteria	JORC Code Explanation	Commentary	
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drilling has been completed by numerous parities over the life of the project. RAB, reverse circulation, and diamond drilling have all been completed.	
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any	Silver Lake completed industry standard QAQC on drilling at Hammer and Tap, with standards, blanks, and field duplicates inserted at regular intervals.	
	measurement tools or systems used.	While no QAQC has been explicitly stated within reports of Anglo Gold Ashanti's annual replorts, there is discussion around repeatability of assay grades due to a high coarse gold component. This is discussed in the body of this announcement under additional information for the Hammer and Tap Resource.	
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g	Anglo Gold Ashanti collected the drill spoil direct from the cyclone in bags and laid in 10m lines. These bags were then riffle split into 1m samples and either 2m or 4m composites, with the composites being sent for analysis. No QAQC is detailed in the reports, however the reference to duplicates in discussions indicates at least a limited duplicate program was completed. Composites were sent to Analabs in Perth for analysis for Au by fire assay with AAS finish. Anomalous zones were resubmitted at 1m sample size for the same analysis.	
	charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Cortona Resources split the drill spoil through the cyclone into plastic bags and an accompanying 1m sample into a calico bag. Four-meter (4m) composite samples were collected by combining representative spear samples of the 1m drill spoils from the plastic bags. All 4m composite samples were assayed by the Amdel laboratory in Kalgoorlie. Samples were pulverized to >95% passing through a 75µm sieve. Gold was determined by aqua regia digest with a standard atomic absorption spectrometer (AAS) finish. Anomalous zones were resampled using the 1m splits in calico bags and assayed by the Amdel laboratory in Kalgoorlie. Samples were pulverized to >95% passing through a 75µm sieve. Gold was determined by aqua regia digest with a standard atomic absorption spectrometer (AAS) finish. Anomalous zones were resampled using the 1m splits in calico bags and assayed by the Amdel laboratory in Kalgoorlie. Samples were pulverized to >95% passing through a 75µm sieve. Gold was determined by 40g fire assay with a standard atomic absorption spectrometer (AAS) finish. Limited standards were introduced into the process late in the drilling.	
		Silver Lake completed similar process to those detailed above, using 40g fire assay with AAS finish. Diamond drilling was oriented so that structural measurements could be taken. While the sampling method of the	
		diamond core is not discussed in historical reports, the small amount completed is not thought to have a significant influence on the global estimate.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond	Reverse circulation drilling was completed using a face sampling percussion hammer. The reverse circulation bit size is unknown.	
	tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond drilling was completed using NQ size in fresh rock.	
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Historic reverse circulation recovery is unknown.	

Section 1: Samplin	ng Techniques and Data	
Criteria	JORC Code Explanation	Commentary
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Historic reverse circulation recovery is unknown.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no discussion within historic reports around recovery
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Logging of reverse circulation chips record lithology, mineralogy, texture, mineralisation, weathering, colour, alteration, veining, and structure. Diamond core has been geologically logged and sampled for lithology, mineralogy, texture, mineralisation,
	Whether logging is qualitative or quantitative in nature.	weathering, colour, alteration, veining, and structure. Structural measurements on the core support the mineralogical interpretation.
	Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged	All relevant drilling has been logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond core was cut and half core taken for assay.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Reverse circulation sampling has been riffle split to 1m increments from the bagged drill spoil. Composite samples were spear sampled from the bags. There is no mention of wet samples within the historic reports, and as much of the mineralisation is hosted close to surface, it would be expected that most of the drilling would have been dry.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	As all samples were prepared by reputable commercial laboratories, it is assumed that samples were prepared to industry standard at the time.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All subsampling activities are carried out by commercial laboratory and are considered to be satisfactory.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	Silver Lake regularly took field duplicates as part of their QAQC. Analysis of duplicates indicates an acceptable amount of repeatability, however there is evidence of a high nugget within the mineralisation, as identified by Anglo Gold Ashanti in screen fire assay analysis indicating a high portion of coarse gold.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes of 2-3kg are considered to be appropriate given the grain size of the material sampled. More modern techniques of analysis will be investigated in the future to determine if better repeatability can be achieved.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples are analysed by an external laboratory using a 40g to 50g fire assay with AAS finish. This method is considered suitable for determining gold concentrations in rock and is a total digest method.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used in this Myhree Resource.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Integra Mining and Silver Lake had a full QAQC program, with standards, blanks and field duplicates submitted with each batch of samples. There have been no issues observed within the QAQC data.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts are verified by database, geological and corporate staff.

Criteria	JORC Code Explanation	Commentary
	The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	No twinning of holes has been completed to date. Logging is completed in the field on a table before being uploaded into an SQL database. Assay files are uploaded directly from the lab into the database. Historic drilling was provisionally check against the hard copies of annual reports on the DMPS website.
	Discuss any adjustment to assay data.	No adjustments have been made to the assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Silver Lake's collars are picked up by DGPS. Downhole surveys from both planned and magnetic readings downhole. Historic survey control is unknown.
	Specification of the grid system used.	All work has been completed in the grid system GDA 1994 MGA Zone 51.
	Quality and adequacy of topographic control.	Topography has been defined DGPS survey of the area. All collars have been projected to this surface.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The nominal spacing is 30m (northing) by 25m (easting).
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	It is sufficient.
Orientation of data in relation to geological structure	Whether sample compositing has been applied.	Drill hole data has been composited downhole to 1m prior to the geostatistical analysis, continuity modelling and grade estimation process. The compositing has been run within the respective mineralisation domains using these as hard boundaries.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Preliminary drilling at Hammer and Tap was oriented south-east at -60 dip. Silver Lake drilling was rotated to be drilled south at -60 dip based off an updated interpretation. This makes most of the drilling intersecting mineralized zones at close to perpendicular for the bulk of the deposit.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Most drilling from surface has been drilled as close to perpendicular to the predicted orientation of mineralisation as possible. This has reduced the risk of introducing a sampling bias as far as possible. No orientation-based sampling bias has been identified in the data at this point.
Sample security	The measures taken to ensure sample security.	Sample security is not known for Hammer and Tap drilling.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of all available information on sampling and procedures used from annual reports has been reviewed in converting this Mineral Resource.

. . --

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land	Type, reference name/number, location and ownership	The Hammer and Tap Mineral Resource is located on M26/352 and M26/834.
tenure status	including agreements or material issues with third parties such as Joint Ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Mining lease M26/352 is granted is held until 2032 and is renewable for a further 21 years on a continuing basis. Mining lease M26/834 is granted is held until 2037 and is renewable for a further 21 years on a continuing basis.

Criteria	JORC Code Explanation	Commentary
		All production is subject to a Western Australian state government Net Smelter Return ("NSR") royalty of 2.5%.
		There are no registered Aboriginal Heritage sites or pastoral compensation agreements over the tenements.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediment to obtaining a licence to operate exists and the tenements are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historic workings consist of small costines and trial pits, generally appearing to target paleo-alluvial gold. Along with these minor workings are a couple of shafts that appear to target potential bedrock mineralisation. Mining is assumed to have occurred over a period of 30-100 year ago.
		Recorded drilling in the area has occurred since around 2001, with no clear history of drilling prior. Drilling consists of Reverse Circulation ("RC"), Rotary Air Blast ("RAB") and Diamond Core Drilling ("DD"), with no drilling having been completed by Black Cat to date. Anglo Gold Ashanti completed the first round of drilling in the early 2000's, targeting an interpreted north-east/south-west trending structure thought to be following bedding. This work was followed up by Corona Minerals in 2006, before Silver Lake acquired the tenements. A reinterpretation of the mineralisation was completed and a new east-west orientation for mineralisation was interpreted. This was tested with an extensive RC and diamond program, with the results used to produce the maiden Mineral Resource for Hammer and Tap. Little has been done to the tenements in the last 8-9 years.
Geology	Deposit type, geological setting and style of mineralisation.	The area around Hammer and Tap consists of a dolerite underlying transported cover. There is a felsic unit to the west and ultramafic occurs to the south and east.
		Mineralisation is hosted within the dolerite in subvertical, east-west trending bucky sheeted quartz veins. These veins, and the mineralisation, appear to be truncated at depth by a black shale unit.
		A moderately shallow weathering profile exists across the deposit with oxide down to 40m in places. A transitional zone overlies fresh rock that from 10m to 60m below surface.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length; and if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the 	A table of significant intercepts for all RC and diamond holes is included in this announcement for all drilling relevant to this Mineral Resource.

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually	All aggregated zones are length weighted. No high-grade cuts have been used, except for Resource estimation as discussed in the text.
	Material and should be stated.	
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All intersections are calculated using a 1 g/t Au lower cut-off with maximum waste zones between grades of 1m.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, as no metal equivalent values have been reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	All intercepts are reported as downhole depths as true widths are not yet determined.
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration.	All results have been tabulated in this announcement.
	Results are not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geophysical surveys including aeromagnetic surveys have been carried out by previous owners to highlight and interpret prospective structures in the project area.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling).	Black Cat plans to conduct an exploration program to confirm the current interpretation and in fill the drilling with the goal of converting some of the Mineral Resource to Indicated.

Section 2: Report	Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)		
Criteria	JORC Code Explanation	Commentary	
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.		

Criteria	JORC Code Explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Data has been stored in an SQL server database. Historic data has been provisionally checked against hard copies of the data as reported in annual reports to the Department of Mines and Petroleum.
	Data validation procedures used.	
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The Competent Person has undertaken a site visit on 17/06/2020. While drilling has not been completed at Hammer and Tap since 2011 and so was not observed, the historic workings were inspected and the geology and ministerial site intermediate use in the second
	If no site visits have been undertaken indicate why this is the case.	mineralogical interpretation verified where possible.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The resource categories assigned to the model directly reflect the confidence of the geological interpretation that is built using local, structural, mineral, and alteration geology obtained from geophysics, logging, drilling results and
	Nature of the data used and of any assumptions made.	mapping.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The geological interpretation of Hammer and Tap has considered all available geological information. RC and Diamond drilling was used during interpretation with the exclusion of RAB and AC due to the lack of confidence in the technique for modelling and estimation.
	The use of geology in guiding and controlling Mineral Resource estimation.	Mineralisation was modelled as subvertical sheeted veins striking E-W, based off the geological interpretation. Wireframes of the mineralisation were constructed using cross sectional interpretations based on a 0.5 g/t Au cut-
	The factors affecting continuity both of grade and geology.	off grade with no minimum downhole length. Where necessary, values >0.2 g/t Au were included for geological continuity.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource	The Hammer and Tap Resource area extends over a strike length of 300m and a width of 320m as discrete sheeted veins. Mineralisation has a vertical extent of 135m and is constrained by black shale as depth with no mineralisation observed below this layer.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation	Gold grade was estimated using Surpac and was completed using inverse distance squared. Due to the small number of drill holes in each domain, ID2 was considered an acceptable method. The Mineral Resource has factored this uncertainty into the classification.
	parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was	Search ellipse dimensions and orientation reflect the parameters derived from geological analysis.
	chosen include a description of computer software and parameters used.	Only Au grade was estimated. No other elements were estimated.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral	No deleterious elements were estimated or assumed. Preliminary environmental testing indicates no deleterious elements in the deposit.
	Resource estimate takes appropriate account of such data.	Block sizes were selected based on drill spacing and the thickness of the mineralised veins at 10m (east) by 1m (north) by 5m (z). Sub blocking down to 5/0.5/2.5 to honour estimation domain volumes was utilised.
	The assumptions made regarding recovery of by-products.	Average drill spacing was between 30m and 50m in the majority of the deposit.
		No selective mining units were assumed in the resource estimate.

Criteria	JORC Code Explanation	Commentary
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	Blocks were generated within the mineralised volumes that defined each mineralised zone. Blocks within these zones were estimated using data that was contained with the same zone. Hard boundaries were used for all domains.
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Top cuts were applied to the data to control the effects of extreme high grade Au values that were considered not representative. The effect of the top cuts was reviewed with respect to the resulting Population distribution and fragmentation, mean and CV values.
	Any assumptions behind modelling of selective mining units.	The model was validated by comparing statistics of the estimated blocks against the composited sample data;
	Any assumptions about correlation between variables.	visual examination of the block grades versus assay data in section; and swathe plots.
	Description of how the geological interpretation was used to control the resource estimates.	
	Discussion of basis for using or not using grade cutting or capping.	
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content	All estimations are carried out on a 'dry' basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The indicative cut-off grade of 1.0 g/t Au for the Mineral Resource estimation is determined by the assumption that mining Hammer and Tap will be a small sized open pit operation.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable,	No minimum width is applied to the Resource. Minimum widths are assessed and applied using Whittle and Mining Shape Optimiser software during the Reserve process.
	external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	It is assumed that planned dilution is factored into the process at the stage of Reserve and stope design planning.
assumptions me	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for	Assumed the material will be trucked and processed at a toll treat gold plant. Recovery factors are assigned based on lab test work, and on-going experience.
	eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with	No metallurgical assumptions have been built or applied to the Resource model.

Black Cat Syndicat	
Syndicat	e

Criteria	JORC Code Explanation	Commentary
	an explanation of the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	A conventional storage facility is used for the process plant tailings. Waste rock is to be stored in a traditional waste rock landform 'waste dump'. No work has yet been completed around deleterious elements within the Hammer and Tap deposit.
Bulk density	 Whether assumptions made. Whether assumptions. If determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Bulk density is assigned based on regolith. Values of 1.80, 2.20 and 2.70 t/m ³ are used for oxide, transitional and fresh waste rock respectively. This has been determined by using average values at similar deposits in the area.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	No Measured mineral resources have been classified at Hammer and Tap. No Indicated mineral resources have been classified at Hammer and Tap. Inferred mineral resources are based on limited data support. Drilling and structural measurements are the major contributors to the model. Material that was not estimated within the first three passes has not been classified. The classification of the Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The geological interpretation, estimation parameters and validation of the Resource model were peer reviewed by Black Cat staff prior to accepting the responsibility for the Mineral Resource.
Discussion of relative	Where appropriate a statement of the relative accuracy and	No external reviews of the Resource estimate had been carried out at the time of writing. The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per
accuracy/ confidence	confidence level in the Mineral Resource estimate using an	the guidelines of the 2012 JORC Code. The Mineral Resource was originally reported by Silver Lake and has beer

Section 3: Estimat	ection 3: Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)		
Criteria	JORC Code Explanation	Commentary	
	approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	acquired by Black Cat. A review of the resource was completed prior to Black Cat taking responsibility for the reporting. As is reflected in the Inferred classification of the Resource, it is an early stage project with more work yet to be completed to add confidence. The mineralisation is thought to be similar to nearby Wombola Dam. If this is the case, then it is expected that the complexity of mineralised lodes will increase as drilling becomes tighter down to grade control levels.	
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where	The statement relates to the global estimates of tonnes and grade at a 1.0 g/t Au cut-off. No historic estimates or mining have been recorded at the deposit	

JORC 2012 Table 1 for Rowe's Find Mineral Resource

Section 1: Sampling Techniques and Data		
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drilling has been completed by numerous parities over the life of the project. Air core, RAB, reverse circulation, and diamond drilling have all been completed.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	RC and DD drilling undertaken by previous companies to provide high quality representative samples that are carried out to industry standard and include QAQC standards, duplicates and blank material.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m	Integra Mining's RC drilling was split by the drill crew using a riffle splitter into 1m intervals. A laboratory split was collected in prenumbered calico bags, while the spoil was collected in large plastic bags and stored in lines of 20 bags. A 4m composite from the spoil by spear sampling, with any anomalous composites (>0.2 g/t Au) having the corresponding 1m laboratory sample re-assayed.
	samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Composites were analysed by 10g aqua regia digest with AAS finish, while the 1m re-samples were analysed by 50g fire assay with AAS finish.
		Historic drilling had all samples collected from the cyclone in bags for each metre drilled. The samples were obtained by riffle splitting the 1m samples into a 2kg composite sample.
		Analysis was completed at by ALS using AAS finish.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond	Reverse circulation drilling was completed using a face sampling percussion hammer. Diamond drilling was oriented and logged geotechnically.
	tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Historical reverse circulation drilling size is unknown.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Integra Mining recorded recovery for every sample, with good recoveries observed. There is no known relationship between recovery and grade. There is no discussion of recovery in the annual reports for historic drilling. Diamond core was geologically and geotechnically logged with core loss noted during this process.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Sample representativity was checked through the use of duplicates with acceptable results from Integra Mining.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade for drilling completed at Fingals Fortune.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Logging of reverse circulation chips record lithology, mineralogy, texture, mineralisation, weathering, colour, alteration, veining and structure.

Section 1: Samplin	ig Techniques and Data	
Criteria	JORC Code Explanation	Commentary
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Diamond core was geologically logged and sampled by for lithology, mineralogy, texture, mineralisation, weathering, colour, alteration, veining and structure. No historic core or chips are available.
	The total length and percentage of the relevant intersections logged	All relevant drilling has been logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	The historical sampling method for diamond core is not discussed in the annual reports. Diamond core represents a very small percentage of the overall samples used in the Mineral Resource. It is not considered to have a material impact on the global estimate presented.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All samples were bagged from the rig. Integra samples were split on the rig, while Julia Mines used a riffle splitter to take the 1m samples. Composites were created through both riffle splitters and spear sampling. There sampling was generally dry as per Mount Monger's annual reports.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling	The laboratory preparation of samples adheres to industry best practice. It is conducted by a commercial laboratory and involves oven drying, coarse crushing then total grinding. All subsampling activities are carried out by commercial laboratory and are considered to be satisfactory.
	stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling. Whether sample sizes are appropriate to the grain size of	Integra used field duplicate samples to check the representativity of sampling. These were submitted for the same assay process as the original samples and the laboratory are unaware of such submissions. Julia Mines had repeats completed with no issues identified in the review of the data. Sample sizes of between 2-3kg are considered to be appropriate for the deposit.
Quality of assay data and laboratory tests	the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All samples are analysed by an external laboratory. Julia Mines does not discuss assay methods beyond using an AAS finish. Integra Mining used 10g charge and an aqua-regia digest with graphite furnace atomic absorption spectrometry finish on composites, with a 50g fire assay with AAS finish on 1m resamples.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	These methods re considered suitable for determining gold concentrations in rock and are a total digest method. No geophysical tools were used in this Mineral Resource.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Integra Mining had a full QAQC program, with standards, blanks and field duplicates submitted with each batch of samples. There have been no issues observed within the QAQC data. Historic drilling had limited QAQC completed, limited to repeats of assays. Results were compared to close by modern drill holes and were similar in grade.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts are verified by database, geological and corporate staff.
	The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Diamond twinning has not been completed at this point. Data has been reviewed from the digital file to the hard copies of annual reports with limited errors observed at this point.

Criteria	JORC Code Explanation	Commentary
	Discuss any adjustment to assay data.	No adjustments have been made to the assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Survey control for historic drilling is not discussed in the annual reports and represents a risk to the Mineral Resource Drilling completed by Integra Mining were picked up by survey consultants using DGPS.
	Specification of the grid system used.	Prior to Integra Mining, Rowe's Find was surveyed in a local grid, with all drilling converted to MGA 94 Zone 51 once Integra took possession. All reported references are in MGA 94 Zone 51.
	Quality and adequacy of topographic control.	Topography has been defined as a planar elevation at this point, with all collars corrected to the surface for consistency in elevation during estimation. A detailed topographic survey will be conducted before the next Resource update.
Data spacing and	Data spacing for reporting of Exploration Results.	Drillhole spacing is somewhat sporadic ranging from 10m by 10m up to around 50m by 50m.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	It is sufficient.
Orientation of data in relation to geological structure	Whether sample compositing has been applied.	Drill hole data has been composited downhole to 2m prior to the geostatistical analysis, continuity modelling and grade estimation process. The compositing has been run within the respective mineralisation domains using these as hard boundaries.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	All drilling has been drilled to the south east at a dip of -60.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	All drilling from surface has been drilled as close to perpendicular to the predicted orientation of stratigraphy as possible. This has reduced the risk of introducing a sampling bias as far as possible. No orientation-based sampling bias has been identified in the data at this point.
Sample security	The measures taken to ensure sample security.	The sample security of the historic drilling in unknown but is expected to have been acceptable.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of all available information on sampling and procedures used from annual reports has been reviewed in converting this Mineral Resource.

Section 1. Sampling Techniques and Data

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as Joint Ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Rowe's Find is located on M28/0370 and M28/0164. Regional exploration drilling occurred on E28/0164. M28/0370 and M28/0164 are currently held by Silver Lake (Integra) Pty Ltd E28/0164 (pending) is currently held by Black Cat (Bulong) Pty Ltd
	park and chvironmental seamys.	Mining Lease M28/0164 is held until 2030 and is renewable for a further 21 years on a continuing basis. Mining Lease M28/0370 is held until 2033 and is renewable for a further 21 years on a continuing basis.

Criteria	JORC Code Explanation	Commentary
		All production is subject to a Western Australian state government Net Smelter Return ("NSR") royalty of 2.5%.
		There are no registered Aboriginal Heritage sites or pastoral compensation agreements over the tenements.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediment to obtaining a licence to operate exists and the tenements are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Rowe's Find was first worked by the prospector Harry Eldridge from 1978, with an estimated 40 tonnes mined for 12 oz at a grade of approximately 9.3 g/t Au.
		The tenement was then purchased by Julia Mines in 1987, with surface and underground sampling completed, along with a 20 hole RC program.
		Freeport exploration optioned the tenements in 1988, completing a 24 hole RC drilling program. The RC program was followed up in 1990 with a program of RAB drilling over the prospect to test for further gold mineralisation, along with 2 diamond holes targeting fresh rock extension of the mineralisation. A ground magnetic survey was completed over the area.
		Julia Mines continued periodic exploration over the area until 2005 when Integra Mining took over the leases.
		Integra Mining completed a variety of work over the area, including two RC programs, a diamond program, geophysical surveys, and a Mineral Resource competed by Cube Consulting in 2006.
		No on the ground exploration work has been completed since 2012.
Geology	Deposit type, geological setting and style of mineralisation.	The Rowe's Find Project area is located predominantly on the eastern edge of the Kurnalpi Terrane, generally characterised by ultramafic rocks in the west and an increase of mafic and felsic to intermediate volcanic rocks to the east. The mafic and felsic rocks generally display a more complex interleaving than in surrounding terrains.
		Within the Rowe's Find deposit, the dominant rock type is a medium-grained granitoid, with altered mafic rock referred to by the field term amphibolite. Biotite alteration of the amphibolite is widespread, and garnet is strongly developed in several zones. The amphibolite occurs as a shallow NW- dipping lenses within the granitoid. Fine grained felsic intrusive and quartz porphyries cut this amphibolite sequence. Quatz-mica schist is common, with biotite schist less common, generally developed along the margins of the amphibolite lenes.
		The entire deposit is obscured by a thin layer of Cainozoic sediments obscuring any underlying geology. The sediments are interpreted to have been sourced locally from the underlying granitoid.
		Gold mineralisation is hosted in all rock types but is best developed within the amphibolite. Mineralisation is generally associated with strong biotite alteration and shearing, with the highest gold grades associated with pyrite and quartz veining. The highest grades and widest intercepts within drilling appear to be associated with supergene enrichment.

Criteria	JORC Code Explanation	Commentary
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length; and if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A table of significant intercepts for all RC and diamond drilling is included in this announcement for all drilling relevant to this Mineral Resource.
ata aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of birth grade results and length of law grade results	All aggregated zones are length weighted. No high-grade cuts have been used, except for Resource estimation as discussed in the text. All intersections are calculated using a 1 g/t Au lower cut-off with maximum waste zones between grades of 1m.
	high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, as no metal equivalent values have been reported.
Relationship between nineralisation widths and ntercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All intercepts are reported as downhole depths as true widths are not yet determined.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
agrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body of the announcement.
alanced reporting	Where comprehensive reporting of all Exploration.	All results have been tabulated in this announcement.

Section 2: Repo	Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)							
Criteria	JORC Code Explanation	Commentary						
	Results are not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.							
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geophysical surveys including aeromagnetic surveys have been carried out by previous owners to highlight and interpret prospective structures in the project area. No geophysics was used in the production of the Mineral Resource						
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling).	Black Cat plans to conduct an exploration program to confirm the current interpretation and target extensions to the currently modelled mineralisation.						
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.							

Section 3: Estima	tion and Reporting of Mineral Resources	(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)					
Criteria	JORC Code Explanation	Commentary					
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Data has been stored in an SQL server database. Historic data has been provisionally checked against hard copies of the data as reported in annual reports to the Department of Mines and Petroleum.					
	Data validation procedures used.						
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	No site visit has been conducted at this time. Drilling has not been conducted on the site since 2012, and the deposit lies under a layer of transported sediments making mapping problematic. A site visit will be completed during the first Plack Cat drill complete a second data data data data data data data da					
	If no site visits have been undertaken indicate why this is the case.	during the first Black Cat drill campaign, prior to any updated Mineral Resource.					
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The resource categories assigned to the model directly reflect the confidence of the geological interpretation that is built using lithology, structural, mineral, and alteration geology obtained from geophysics, logging, drilling results					
	Nature of the data used and of any assumptions made.	and mapping.					
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The geological interpretation of Rowe's Find has considered all available geological information. RC and Diamond drilling was used during interpretation with the exclusion of RAB and AC due to the lack of confidence in the technique for modelling and estimation.					
	The use of geology in guiding and controlling Mineral Resource estimation.	Mineralisation was modelled at a >1 g/t Au cut-off grade with no minimum downhole length. The mineralisation interpretation was guided by geological and structural controls observed within the drilling.					
	The factors affecting continuity both of grade and geology.						
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource	The Rowe's Find Resource area consists of two shear zones, with the major shear extending dover a strike length of 120m and includes the down dip extent of 100m. The average thickness of the shear is 4m but ranges from 1m to 15m.					
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation	Gold grade was estimated using Surpac and was completed using ordinary kriging. It was considered that a more robust geological model with smoother and more continuous mineralised lodes will reduce the effects of higher CV. Estimation was carried out on the parent cell.					
	parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and	Variograms were sourced from the nearby and geologically similar Harry's Hill deposit and were rotated to fit each domain.					
	parameters used.	Search ellipse dimensions and orientation reflect the geological analysis.					
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral	Only Au grade was estimated. No other elements were estimated.					
	Resource estimate takes appropriate account of such data.	No deleterious elements were estimated or assumed.					
	The assumptions made regarding recovery of by-products.	Block sizes were selected based on drill spacing and the thickness of the mineralised veins at 10m (east) by 10m (north) by 5m (z). Sub blocking down to 2.5/5/2.5 to honour estimation domain volumes was utilised.					
		Average drill spacing is sporadic, ranging from 10m x 10m up to 50m x 50m.					

Criteria	JORC Code Explanation	Commentary
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	No selective mining units were assumed in the resource estimate. Blocks were generated within the mineralised volumes that defined each mineralised zone. Blocks within these
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	zones were estimated using data that was contained with the same zone. Hard boundaries were used for all domains. Top cuts were applied to the data to control the effects of extreme high grade Au values that were considered not representative. The effect of the top cuts was reviewed with respect to the resulting Population distribution and
	Any assumptions behind modelling of selective mining units.	fragmentation, mean and CV values.
	Any assumptions about correlation between variables.	The model was validated by comparing statistics of the estimated blocks against the composited sample data;
	Description of how the geological interpretation was used to control the resource estimates.	visual examination of the block grades versus assay data in section; swathe plots; and reconciliation against previous production and estimates.
	Discussion of basis for using or not using grade cutting or capping.	
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content	All estimations are carried out on a 'dry' basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The indicative cut-off grade of 1.0 g/t Au for the Mineral Resource estimation is determined by the assumption that mining Rowe's Find will be a small open pit operation.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	No minimum width is applied to the Resource. Minimum widths are assessed and applied using Whittle and Mining Shape Optimiser software during the Reserve process. It is assumed that planned dilution is factored into the process at the stage of Reserve and stope design planning.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made	Assumed the material will be trucked and processed at a toll treat gold plant. Recovery factors are assigned based on lab test work, and on-going experience. No metallurgical assumptions have been built or applied to the Resource model.

Criteria	JORC Code Explanation	Commentary
	an explanation of the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	A conventional storage facility is used for the process plant tailings. Waste rock is to be stored in a traditional waste rock landform 'waste dump'.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Bulk density is assigned based on regolith. Values of 1.80, 2.20 and 2.70t/m³ are used for oxide, transitional and fresh rock respectively. Bulk density values are taken as industry standard figures for the type of lithologies at the deposit. Further work wil be undertaken to validate densities at Rowe's Find Density values are allocated uniformly to each regolith type. The original 2006 Mineral Resource used 2.4 and 3.0t/m³ for transitional and fresh rock respectively. No supporting evidence could be obtained during the conversion process, and so more industry standard values of 2.2 and 2.7t/m³ were used. This resulted in a reduction in contained gold of approximately 1,000 oz.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	No Measured mineral resources have been classified at Rowe's Find No Indicated mineral resources have been classified at Rowe's Find. Inferred mineral resources are based on limited data support. Drilling and structural measurements are the major contributors to the model. The classification of the Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The geological interpretation, estimation parameters and validation of the Resource model were peer reviewed by Black Cat staff prior to accepting the responsibility for the Mineral Resource. No external reviews of the Resource estimate had been carried out at the time of writing.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an	The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. The Mineral Resource was originally reported by Integra Mining and has

Section 3: Estimati	ction 3: Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)								
Criteria	JORC Code Explanation	Commentary							
	 approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 been acquired by Black Cat. A review of the resource was completed prior to Black Cat taking responsibility for the reporting. As is reflected in the Inferred classification of the Resource, it is an early stage project with more work yet to be completed to add confidence. The statement relates to the global estimates of tonnes and grade at a 1.0 g/t Au cut-off. The original 2006 Mineral Resource used 2.4 and 3.0 t/m³ for transitional and fresh rock respectively. No supporting evidence could be obtained during the conversion process, and so more industry standard values of 2.2 and 2.7 t/m³ were used. This resulted in a reduction in contained gold of approximately 1,000 oz. 							

Fingals Fortune Historical Significant RC and Diamond Drilling Intercepts Related to the Mineral Resource

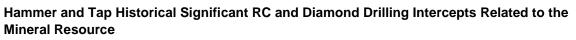
Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
A2374	394662	6573213	330	-70	59.73	0	2	2	2.65
ELRC10	394175	6574105	385	-60	89.73	12	13	1	18.9
ELRC13	394114	6574179	384	-60	89.73	53	54	1	1.98
ELRC15	394104	6574229	384	-60	89.73	36	37	1	2.96
LLKCIS	394104	0374229	304	-00	09.75	54	55	1	2.03
ELRC2	394167	6573905	391	-60	89.73	0	3	3	1.23
ELRC9	394145	6574104	384	-60	89.73	63	64	1	1.66
FIRC001	394693	6573082	394	-60	52.807	14	15	1	2.04
TIRCOOT	004000	0373002	534	-00	52.007	40	41	1	1.26
FIRC003	394641	6573101	393	-60	48.807	82	83	1	1.28
	001011	00/0101	000		40.007	89	91	2	1.97
FIRC004	394607	6573075	393	-60	48.807	86	87	1	1.19
1 11(0004	004007	0070070	000		40.007	93	97	4	4.02
FIRC005	394813	6573200	394	-60	48.807	46	47	1	2.33
FIRC006	394839	6573229	394	-60	48.807	73	76	3	12.88
FIRC007	394735	6573006	391	-60	48.807	127	131	4	1.3
11100007	004700	0070000			40.007	110	113	3	2.61
FIRC008	394797	6573058	391	-60	48.807	77	78	1	3.51
1110000	004707	0070000			40.007	80	83	3	2.3
FIRC010	394875	6573149	392	-60	48.807	56	57	1	3.44
TIKCOTO	554075	0373143	552	-00	40.007	61	62	1	2.14
FIRC011	394900	6573185	392	-60	48.807	71	75	4	1.5
ПКСОТТ	334300	0373103	552	-00	40.007	77	78	1	1.36
FIRC012	394547	6573119	395	-60	48.807	112	113	1	1.56
FIRC012	394347	0373119	395	-00	40.007	117	118	1	1.57
FIRC013	394705	6573626	393	-60.28	90.436	90	91	1	5.68
FIRC016	394680	6573583	393	-61.07	91.676	101	108	7	1.5
FIRC018	394760	6573589	395	-60.85	89.836	92	95	3	3.39
FIRC020	394847	6573588	400	-60	89.73	13	14	1	2.52
1 11(0020	001011	0070000			00.70	31	32	1	4
FIRC021	394719	6573547	394	-59.56	89.666	79	86	7	1.16
FIRC023	394797	6573545	396	-60	89.73	60	69	9	1.76
1 11 10 0 2 0					00.10	77	79	2	2.69
FIRC024	394700	6573532	393	-60.53	89.236	87	92	5	1.51
FIRC025	394737	6573532	394	-60	89.73	76	78	2	2.06
FIRC026	394779	6573531	395	-60	89.73	61	64	3	1.36
FIRC027	394818	6573530	396	-60.52	89.616	52	59	7	1.48
						63	64	1	1.3
FIRC028	394846	6573526	398	-60.78	87.916	61	63	2	2.75
FIRC029	394895	6573529	398	-60.62	87.166	51	52	1	1.92
FIRC031	394838	6573509	397	-60.04	91.266	36	37	1	1.08
					0200	47	49	2	3.33
FIRC035	394858	6573455	398	-60	89.73	32	33	1	2.32
						37	39	2	1.27
FIRC038	394820	6573432	397	-60	89.73	11	14	3	2.37
						19	22	3	2.22
FIRC039	394808	6573383	396	-60.17	93.026	22	27	5	1.77
FIRC040	394830	6573383	396	-60.26	93.656	20	24	4	1.46
FIRC041	394880	6573381	396	-60.88	90.746	10	12	2	3.68
FIRCD001	394639	6573039	394	-60	52.807	77	80	3	1.81

Hole ID East North RL North Dip Azimuth Azimuth Ins.97 Int.97 Int.97 Int.97 Int.93 Periation (a) FIRCD002 394665 6573051 39 -60 90.807 88 89.5 1.5 2.81 FIRCD003 394550 6573258 390 -60 90.807 88.1 33.4 49 2.85 GRC20 394677 6572957 392 -61 264.635 31 32 1 4.4 GRC38 394132 6573077 380 -55.5 93.73 60 52 2 11.65 GRC41 394146 6574057 385 -58 84.73 68 66 1 1.2 GRC43 394146 6574157 387 -56.8 85.73 91 93 2 4.95 GRC44 394086 6574257 384 -57 85.73 72 73 1 1.82 GRC45 394066 6574257 <th></th> <th>MGA</th> <th>MGA</th> <th></th> <th></th> <th></th> <th>From</th> <th>То</th> <th>Interval</th> <th>Au Grade</th>		MGA	MGA				From	То	Interval	Au Grade
FIRCD002 394665 6673061 394 60 52.807 88 89.5 1.5 2.81 FIRCD003 394500 6573258 390 -60 90.807 81.93 4.49 2.85 GRC20 394677 6572967 392 -61 264.63 31 32 1 4.4 GRC38 394132 6573857 390 -62 89.835 44 45 1 1.2 GRC41 394166 6574007 387 -56.5 93.73 50 52 2 11.65 GRC41 394146 657407 385 -58 84.73 66 66 1 1.2 GRC43 394126 6574177 387 -56.8 85.73 91 93 2 4.95 GRC44 394086 657427 385 -57.8 85.73 71 1 1.8 GRC47 394066 6574257 385 -57.8 73.7 72	Hole ID			RL	Dip	Azimuth				
FIRCD003 394550 6573268 390 60 90.807 71 72 1 8.7 GRC20 394677 6572957 392 611 264.635 31 32 1 4.4 GRC38 394132 6573857 390 63 93.635 67 70 3 51.71 GRC31 394133 657307 390 65 93.73 50 52 2 11.62 GRC41 394146 657407 387 565 93.73 50 52 2 11.52 GRC43 394146 657407 387 56.8 84.73 66 66 1 1.2 GRC44 394036 657417 387 -56.8 85.73 91 93 2 4.2 GRC45 394086 657427 384 61 93.73 46 54 6 24 GRC47 394066 657427 384 60.342 271.794							115.97	117	1.03	9.15
FIRCD003 394550 6573258 390 60 90.807 88.1 93 4.9 2.85 GRC20 394677 6572957 392 61 264.635 43 46 3 1.3.52 GRC38 394132 6573857 390 63 93.635 67 70 3 5.17 GRC39 394133 6673907 390 62 89.635 24 25 1 1.7 GRC41 394166 6574007 387 -56.5 93.73 50 52 2 11.65 GRC42 394146 6574057 385 -58 84.73 663 66 3 2.02 30.05 GRC44 394086 6574207 385 -58.8 92.73 70 71 1 1.8 GRC46 394096 6574257 385 -57 85.73 72 73 1 4.8 ICDD5001 394780 657309 39 <	FIRCD002	394665	6573061	394	-60	52.807	88	89.5	1.5	2.81
GRC20 334677 6572957 392 -61 264.35 43 4.6 3 1.3.2 1 4.4 GRC38 394132 6573857 390 -62 89.635 -67 70 3 5.17 GRC39 394133 6573907 390 -62 89.635 -44 45 1 1.7 GRC41 394156 6574007 387 -56.5 33.73 50 52 2 11.65 GRC41 394166 6574077 385 -56.8 87.73 -65 66 1 1.2 GRC44 394036 6574157 387 -56.8 85.73 91 93 2 4.95 GRC46 394096 6574257 384 -61 93.73 -66 58 2 1.21 GRC46 394096 6574257 386 -57 85.73 72 73 1 4.8 GRC47 394066 6574257 38	EIRCD003	394550	6573258	300	-60	90 807	71	72	1	8.7
GRC20 394677 6572857 392 -61 264.835 43 46 3 13.52 GRC38 394132 6573857 390 -62 99.635 67 70 3 517 GRC39 394133 6573907 390 -62 89.635 -44 46 1 2.9 GRC41 394156 6574007 387 -56.5 93.73 50 52 2 11.65 GRC43 394146 657407 385 -56.8 87.73 29 30 1 1.4 GRC44 394036 657457 387 -56.8 85.73 91 93 2 4.95 GRC45 384086 6574207 385 -57 85.73 72 73 1 1.8 GRC47 394066 6574257 386 -57 85.73 72 73 1 4.8 ICDD5001 394780 6573087 393 -59.894			0070200			00.007	88.1	93	4.9	2.85
GRC38 394132 657387 390 63 93.635 67 70 3 5.17 GRC38 394133 6573907 390 62 89.635 24 25 1 1.7 GRC41 394156 6574007 387 -56.5 93.73 50 52 2 11.65 GRC41 394146 6574107 385 -58.8 87.73 65 66 1 1.2 GRC44 394036 6574157 387 -56.8 85.73 91 93 2 4.35 GRC44 394036 657427 385 -58.8 92.73 70 71 1 1.8 GRC46 394096 6574257 385 -57 85.73 72 73 1 4.8 GRC5001 394407 657307 385 -57 85.73 72 73 1 1.25 ICDD5003 394407 6573087 393 -59.667 94	GRC20	394677	6572957	392	-61	264,635	31	32	1	4.4
GRC39 394133 6573907 390 62 89.635 24 25 1 1.7 GRC41 394156 6574007 387 -56.5 33.73 50 52 2 11.65 GRC42 394146 6574057 385 -58 84.73 65 66 1 1.2 GRC43 394126 6574107 384 -57.8 87.73 65 66 3 2.02 3.05 GRC44 394036 6574157 387 -56.8 85.73 91 93 2 4.95 GRC46 394096 6574257 384 -61 93.73 70 71 1 1.8 GRC47 394066 6574257 385 -57 85.73 72 73 1 4.8 ICD50001 394407 6573000 396 -60.947 91.689 63.5 64.5 1 23 ICRC5001 394689 6573087 393							43	-		
GRC39 394133 6573907 390 -62 89.635 44 45 1 2.9 GRC41 394156 6574007 387 -56.5 93.73 50 52 2 11.65 GRC42 394146 6574057 385 -58 84.73 -66 63 6 1 1.2 GRC43 394126 6574157 387 -56.8 85.73 91 93 2 4.95 GRC44 394096 6574257 385 -58.8 92.73 70 71 1 1.8 GRC45 394096 6574257 385 -57 85.73 71 70 71 1 1.8 GRC41 394096 6574257 385 -57 85.73 72 73 1 4.8 GRC41 394090 6573212 396 60.342 271.794 61 62 1 1.93 ICD50001 3944609 6573081 393	GRC38	394132	6573857	390	-63	93.635	67	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GRC39	394133	6573907	390	-62	89.635		-		
GRC42 394146 6574057 385 -58 84.73 65 66 1 1.2 GRC43 394126 6574107 384 -57.8 87.73 63 66 3 2.02 GRC44 394036 6574157 387 -56.8 85.73 91 93 2 4.95 GRC45 394086 6574257 384 -61 93.73 -66 58 2 1.21 GRC47 394066 6574257 384 -61 93.73 -48 54 6 2.4 GRC47 394066 6574257 385 -57 85.73 72 73 1 4.8 ICDD5001 394790 6573000 396 -60.947 91.699 63.5 64.5 1 2.3 ICRC5002 39469 6573087 393 -60.452 93.326 106 1 2.75 ICRC5003 394687 6573087 393 -59.78 95.07								-		-
GRC42 394146 6574057 385 -58 84.73 68 70 2 3.05 GRC43 394126 6574107 384 -57.8 87.73 63 66 63 2.02 GRC44 394036 6574157 387 -56.8 85.73 91 93 2 4.95 GRC46 394086 6574257 385 -58.8 92.73 56 58 59 1 1.8 GRC47 394066 6574257 385 -57 85.73 72 73 1 4.8 ICDD5001 394780 6573212 396 -60.342 271.794 61 62 1 1.99 ICRC5001 394609 6573080 394 -59.867 91.893 52 64.5 1 23 0.86 ICRC5002 39469 6573087 393 -59.867 94.65 105 106 1 2.75 ICRC5003 394687 65732	GRC41	394156	6574007	387	-56.5	93.73				
GRC43 394126 6574107 384 -57.8 87.73 63 66 3 2.02 GRC44 394036 6574157 387 -56.8 85.73 91 93 2 4.95 GRC45 394086 6574207 385 -58.8 92.73 70 71 1 1.8 GRC46 394096 6574257 384 -61 93.73 48 54 6 2.4 GRC47 394066 6574257 385 -57 85.73 72 73 1 4.8 ICDD5001 39470 6573020 396 -60.342 271.794 46 47 1 1.25 ICRC5001 394609 6573080 394 -59.894 91.935 120 121 1 1.26 ICRC5002 394649 6573087 393 -59.67 94.65 106 1 2.75 ICRC5004 394565 6573248 398 -60.073 <t< td=""><td>GRC42</td><td>394146</td><td>6574057</td><td>385</td><td>-58</td><td>84.73</td><td></td><td></td><td></td><td></td></t<>	GRC42	394146	6574057	385	-58	84.73				
GRC43 394126 6574107 384 -57.8 87.73 29 30 1 1.4 GRC44 394036 6574157 387 -56.8 85.73 91 93 2 4.85 GRC45 394086 6574207 385 -56.8 92.73 70 71 1 1.8 GRC46 394096 6574257 385 -57 85.73 72 73 1 4.8 GRC47 394066 6574257 385 -57 85.73 72 73 1 4.8 ICDD5001 394407 6573000 396 -60.342 271.794 61 62 1 1.25 ICCD5001 394407 6573000 394 -93.94 91.935 120 121 1 1.52 ICRC5002 394687 6573087 393 -59.667 94.65 163 1 1.52 ICRC5004 394565 6573248 398 -59.78 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
GRC44 394036 6574157 387 -56.8 85.73 91 93 2 4.95 GRC45 394086 6574207 385 -58.8 92.73 70 71 1 1.8 GRC46 394096 6574257 384 -61 93.73 48 54 6 2.4 GRC47 394066 6574257 385 -57 85.73 72 73 1 4.8 ICDD5001 394780 6573212 396 -60.342 271.794 61 62 1 1.99 ICRC5001 394609 6573090 394 -59.894 91.935 120 121 1 1.26 ICRC5002 394649 6573088 393 -60.452 93.326 94 95 1 1.52 ICRC5003 394687 6573087 393 -59.667 94.65 105 106 1 2.75 ICRC5004 394565 6573248 398	GRC43	394126	6574107	384	-57.8	87.73				
GRC45 394086 6574207 385 -58.8 92.73 56 58 2 1.21 GRC46 394096 6574257 384 -61 93.73 48 54 6 2.4 GRC47 394066 6574257 385 -57 85.73 72 73 1 4.8 ICDD5001 394780 6573212 396 -60.342 271.794 46 47 1 1.25 ICDD5003 394407 6573000 394 -59.894 91.935 120 121 1 1.26 ICRC5001 394699 6573087 393 -60.452 93.326 62 63 1 1.51 ICRC5002 394687 6573087 393 -59.667 94.65 105 106 1 2.75 ICRC5003 394565 6573248 398 -60.444 89.294 35 36 1 1.12 ICRC5006 394453 6573209 396		204026	6574457	207	50.0	05 70				
GRC45 394086 6574207 385 -58.8 92.73 70 71 1 1.8 GRC46 394096 6574257 384 -61 93.73 48 54 6 2.4 GRC47 394066 6574257 385 -57 85.73 72 73 1 4.8 ICDD5001 394760 6573212 396 -60.342 271.794 61 62 1 1.99 ICDD5003 394407 6573090 394 -59.894 91.935 120 121 1 1.26 ICRC5001 394609 6573087 393 -69.6452 93.326 62 63 1 1.51 ICRC5003 394687 6573087 393 -69.667 94.65 105 106 1 2.75 ICRC5003 394577 6573248 398 -60.474 89.294 85 36 1 1.122 ICRC5006 394453 6573279 396 <td>GRC44</td> <td>394030</td> <td>03/413/</td> <td>307</td> <td>-30.6</td> <td>00.73</td> <td></td> <td></td> <td></td> <td></td>	GRC44	394030	03/413/	307	-30.6	00.73				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GRC45	394086	6574207	385	-58.8	92.73				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							-			
GRC47 394066 6574257 385 -57 85.73 72 73 1 4.8 ICDD5001 394780 6573212 396 -60.342 271.794 61 62 1 1.99 ICDD5003 394407 6573400 396 -60.947 91.689 63.5 64.5 1 23 ICRC5001 394609 6573080 393 -59.894 91.935 120 121 1 1.23 ICRC5002 394649 6573088 393 -60.452 93.326 62 63 1 1.51 ICRC5003 394687 6573087 393 -59.667 94.65 1005 106 1 2.75 ICRC5004 394565 6573248 398 -59.78 95.072 97 98 1 1.62 ICRC5006 394577 6573248 398 -60.473 93.206 103 104 1 2.5 ICRC5006 394453 6573508	GRC46	394096	6574257	384	-61	93.73				
ICDD5001 394780 6573212 396 -60.342 271.794 61 62 1 1.99 ICDD5003 394407 6573400 396 -60.947 91.689 63.5 64.5 1 23 ICRC5001 394609 6573080 394 -59.894 91.935 120 121 1 1.26 ICRC5002 394649 6573087 393 -60.452 93.326 62 63 1 1.51 ICRC5003 394687 6573087 393 -59.667 94.65 105 106 1 2.75 ICRC5004 394565 6573248 398 -59.78 95.072 105 106 1 1.62 ICRC5005 394577 6573248 398 -60.444 89.294 35 36 1 1.12 ICRC5006 394453 6573470 396 -59.512 92.347 56 58 2 4.77 ICRC5007 394410 657340	GRC47	30/066	6574257	385	-57	85.73				
ICDD5001 394780 6573212 396 -60.342 271.794 46 47 1 1.25 ICDD5003 394407 6573000 396 -60.947 91.689 63.5 64.5 1 23 ICRC5001 394609 6573090 394 -59.894 91.935 120 121 1 1.26 ICRC5002 394649 6573087 393 -60.452 93.326 62 63 1 1.51 ICRC5003 394687 6573087 393 -60.452 93.326 105 106 1 2.75 ICRC5003 394687 6573087 393 -59.667 94.65 105 106 1 2.08 ICRC5004 394565 6573248 398 -59.78 95.072 97 88 1 1.62 ICRC5005 394577 6573248 398 -60.073 93.206 103 104 1 2.5 ICRC5007 394410 65734	01(047	334000	0374237	305	-57	00.70		-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ICDD5001	394780	6573212	396	-60.342	271.794	-	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICDD5003	394407	6573400	396	-60 947	91 689	-			-
ICRC5001 394609 6573090 394 -59.894 91.935 123 126 3 0.86 ICRC5002 394649 6573088 393 -60.452 93.326 62 63 1 1.51 ICRC5003 394687 6573087 393 -59.667 94.65 105 106 1 2.75 ICRC5004 394565 6573248 398 -59.78 95.072 97 98 1 2.08 ICRC5005 394577 6573248 398 -60.444 89.294 35 36 1 1.12 ICRC5006 394453 6573248 398 -60.444 89.294 35 36 1 1.82 ICRC5006 394453 6573248 398 -60.073 93.206 103 104 1 2.5 ICRC5007 394410 6573508 399 -60.199 90.925 36 38 2 12.75 MMD2_1987 394530 6573508<		001101	0010100	000	00.011	01.000				-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICRC5001	394609	6573090	394	-59.894	91.935				-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
ICRC5003 394687 6573087 393 -59.667 94.65 21 22 1 1.72 ICRC5004 394565 6573248 398 -59.78 95.072 97 98 1 2.08 ICRC5005 394577 6573248 398 -60.444 89.294 35 36 1 1.12 ICRC5006 394573 657329 396 -60.073 93.206 103 104 1 2.5 ICRC5006 394410 6573329 396 -59.512 92.347 103 104 1 4.33 ICRC5007 394410 6573508 399 -60.199 90.925 36 38 2 12.75 MMD2_1987 394530 6573508 393 -60 89.73 25.9 1.1 1.25 MMD1 394687 6573209 393 -60 89.73 65 66 1 1.6 MMP10 394687 6573408 389 <td< td=""><td>ICRC5002</td><td>394649</td><td>6573088</td><td>393</td><td>-60.452</td><td>93.326</td><td>94</td><td>95</td><td>1</td><td>1.52</td></td<>	ICRC5002	394649	6573088	393	-60.452	93.326	94	95	1	1.52
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	100.0000						105	106	1	2.75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ICRC5003	394687	6573087	393	-59.667	94.65	21	22	1	1.72
$ \begin{array}{c c c c c c c c c c } & c c c c c c c c c c c c c c c c c c $	10005004	204505	0570040	200	50.70	05.070	97	98	1	2.08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ICRC5004	394565	6573248	398	-59.78	95.072	87	88	1	1.62
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		204577	6572249	208	60.444	80.204	35	36	1	1.12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		394377	0373240	390	-00.444	09.294	69	70	1	1.82
$ \begin{array}{c c c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	ICRC5006	304453	6573320	396	-60.073	93 206	103	104	1	2.5
ICRC5007 394410 6573470 396 -59.512 92.347 56 58 2 4.77 ICRC5008 394922 6573550 399 -60.199 90.925 36 38 2 12.75 MMD2_1987 394530 6573508 393 -60 89.73 23.9 25 1.1 1.25 MMD3_1987 394656 6573409 393 -60 89.73 65 66 1 1.65 MMP1 394687 6573210 393 -60 89.73 65 66 1 1.65 MMP1 394687 6573210 393 -60 89.73 65 10 3.96 MMP10 394477 6573408 389 -90 359.73 18 19 1 1.6 MMP102 394278 6573756 391 -60 89.73 25 26 1 1.4 MMP11 394472 6573408 384 -90 359.7			0070020		00.075	00.200	109	110	1	4.33
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ICRC5007	394410	6573470	396	-59.512	92,347		31		0.91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						02.011				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MMD3_1987	394656	6573409	393	-60	89.73				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MMP1	394687	6573210	393	-60	89.73				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MMP10	394477	6573408	389	-90	359.73				
MMP102 394278 6573756 391 -60 89.73 29 30 1 7 MMP11 394442 6573408 384 -90 359.73 56 59 3 3.45 MMP113 394147 6573855 391 -60 89.73 30 31 1 52 MMP113 394147 6573855 391 -60 89.73 30 31 1 52 MMP12 394382 6573407 384 -59 88.73 64 65 1 6.89 MMP12 394382 6573407 384 -59 88.73 70 71 1 20.7										
MMP11 394442 6573408 384 -90 359.73 56 59 3 3.45 MMP113 394147 6573855 391 -60 89.73 30 31 1 52 MMP12 394382 6573407 384 -59 88.73 64 65 1 6.89 MMP12 394382 6573407 384 -59 88.73 70 71 1 20.7	MMP102	394278	6573756	391	-60	89.73				
MMP113 394147 6573855 391 -60 89.73 30 31 1 52 MMP12 394382 6573407 384 -59 88.73 64 65 1 6.89 70 71 1 20.7		30///2	6573402	381	_00	350 73				
MMP113 394147 6573855 391 -60 89.73 42 47 5 15.72 MMP12 394382 6573407 384 -59 88.73 64 65 1 6.89 70 71 1 20.7		JJ7444Z	0073400	504	-30	553.75				
MMP12 394382 6573407 384 -59 88.73 64 65 1 6.89 70 71 1 20.7	MMP113	394147	6573855	391	-60	89.73				
MMP12 394382 6573407 384 -59 88.73 70 71 1 20.7										
	MMP12	394382	6573407	384	-59	88.73				
	MMP122	394196	6573955	388	-60	89.73				
MMP13 394384 6573507 391 -90 359.73 28 29 1 3.76										

	1		1		1	1			
Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
MMP15	394485	6573507	392	-59	89.73	69	72	3	1.69
			002		00.10	64	66	2	1.5
MMP169	394104	6574254	383	-60	89.73	38	45	7	2.14
MMP170	394054	6574254	385	-60	89.73	45	48	3	1.22
MMP2	394673	6573210	393	-60	89.73	55	58	3	2.22
						52	53	1	1.02
MMP218	394078	6573754	392	-60	89.73	68	70	2	1.35
MMP220	394482	6573207	386	-60	89.73	54	55	1	2.53
MMP24	394135	6574154	384	-59	89.73	42	46	4	12.21
MMP248	394541	6573357	393	-60	89.73	14	19	5	3.14
MMP249	394502	6573356	391	-60	89.73	3 28	6 30	3	3.13 1.27
						37	39	2	1.27
MMP250	394461	6573356	386	-60	89.73	62	63	1	3.74
						34	35	1	11.2
MMP251	394632	6573208	393	-60	89.73	37	38	1	1.34
						56	58	2	3.07
MMP252	394648	6573213	393	-60	89.73	66	68	2	5.8
						43	44	1	1.98
MMP253	394669	6573209	393	-60	89.73	53	56	3	5.43
						72	74	2	4.25
MMP254	394708	6573210	393	-60	89.73	19	20	1	2.94
						68	69	1	1.37
MMP255	394747	6573210	394	-60	89.73	49	50	1	7.64
	204024	0570050	202	00	00.70	16	17	1	1.4
MMP257	394621	6573259	393	-60	89.73	69	70	1	1.21
MMP258	394637	6573259	393	-60	89.73	37	38	1	1.16
10110F 230	394037	0373239	393	-00	09.75	41	42	1	1
MMP259	394662	6573259	393	-60	89.73	39	40	1	1.78
	004002	0070200	000		00.10	22	24	2	2.18
MMP26	394581	6573458	393	-59	89.73	54	60	6	2.9
MMP260	394861	6573260	395	-60	89.73	34	39	5	5.57
						30	31	1	4.24
MMP262	394557	6573308	393	-60	89.73	16	19	3	3.07
						22	31	9	9.37
MMP263	394592	6573309	392	-60	89.73	8	9	1	1.19
						20 27	21 28	1	1.01 3.34
MMP264	394612	6573309	393	-60	89.73	17	19	1	1.2
						21	24	3	4.59
MMP265	394647	6573308	393	-60	89.73	7	8	1	4.33
						35	36	1	1.05
MMP266	394765	6573310	394	-60	89.73	48	49	1	2.58
						26	28	2	58.03
MMP267	394821	6573311	395	-60	89.73	32	33	1	2.45
	004511	0570001	0.00		00.70	17	19	2	5.72
MMP268	394541	6573331	393	-60	89.73	23	29	6	3.08
MMP269	394570	6573330	393	-60	89.73	36	37	1	1.23
	204540	6570157	204	E0	20.70	15	16	1	2.99
MMP27	394542	6573457	394	-59	89.73	31	33	2	3.2
MMP270	394606	6573330	392	-60	89.73	15	16	1	1.36
		0010000				47	48	1	1.28
MMP271	394620	6573330	393	-60	89.73	15	19	4	2.51

Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
						33	38	5	2.09
MMP273	394802	6573334	395	-60	89.73	30	32	2	30.63
MMP274	394581	6573354	392	-60	89.73	38	39	1	1.83
						4	6	2	68.09
MMP275	394621	6573360	393	-60	89.73	40	43	3	2.8
	004050	0570050			00.70	32	38	6	2.05
MMP276	394659	6573359	393	-60	89.73	41	42	1	1.16
MMP280	394572	6573382	393	-60	89.73	6	8	2	7.25
MMP282	394751	6573386	395	-60	89.73	25	29	4	1.73
						52	53 42	1	2.21
MMP284	394433	6573407	384	-60	89.73	41 69	42 70	1	4.62
						19	22	3	17.22
MMP285	394482	6573408	389	-60	89.73	27	22	2	4.65
MMP286	394522	6573409	393	-60	89.73	13	14	1	1.29
MMP287	394569	6573409	393	-60	89.73	10	14	2	2.16
10101 207	004000	0010400	000		00.70	60	61	1	1.1
MMP288	394683	6573410	394	-60	89.73	63	64	1	1.93
MMP289	394723	6573411	396	-60	89.73	46	47	1	3.29
MMP29	394741	6573459	396	-59	89.73	41	44	3	2.06
MMP291	394523	6573433	393	-60	89.73	12	14	2	3.28
MMP292	394562	6573433	393	-60	89.73	4	5	1	5.49
MMP293	394719	6573434	396	-60	89.73	52	53	1	1.54
						2	3	1	2.27
MMP294	394759	6573434	396	-60	89.73	26	32	6	8
N III IDoos	004400	0570.450			00.70	17	21	4	4.85
MMP295	394482	6573458	390	-60	89.73	34	37	3	3.41
MADOOC	204500	0570457	202	00	00.70	27	28	1	1.04
MMP296	394522	6573457	393	-60	89.73	42	43	1	1.88
MMD207	204562	6572459	202	60	00.72	16	19	3	1.97
MMP297	394562	6573458	393	-60	89.73	26	27	1	6.78
MMP298	394600	6573458	393	-60	89.73	0	1	1	1.38
MMP299	394719	6573459	396	-60	89.73	47	51	4	1.35
ММРЗ	394608	6573209	393	-59	87.73	79	81	2	2.43
	001000	0010200	000		01.10	58	62	4	9.16
MMP301	394543	6573483	394	-60	89.73	17	19	2	2.74
						29	31	2	6.32
MMP302	394562	6573484	393	-60	89.73	15	16	1	2.2
						23	26	3	1.18
MMP303	394157	6573855	391	-60	89.73	21	24	3	1.76
MMP305	394720	6573186	393	-60	89.73	27	28	1	1.14
MMP306	394700	6573185	393	-60	89.73	32	39	7	2.05
						80	84	4	1.28
MMP307	394681	6573185	393	-60	89.73	0 34	1 35	1	1.41
						51	53	2	
MMP308	394662	6573183	393	-60	89.73	81	- 53 - 85	4	1.59 1.48
						34	43	9	13.73
MMP309	394641	6573184	393	-60	89.73	53	43 55	9 2	34.9
MMP31	394761	6573359	395	-59	89.73	20	24	4	3.21
MMP310	394925	6573220	395	-60	89.73	0	1	1	1.03
MMP311	394885	6573213	394	-60	89.73	70	77	7	1.03
MMP313	394587	6573209	392	-60	89.73	92	94	2	1.35

Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
						77	79	2	5.64
MMP314	394707	6573234	393	-60	89.73	9	11	2	2.62
MMP316	394631	6573233	393	-60	89.73	58	59	1	2.17
		0010200			00.10	62	63	1	10.04
MMP317	394611	6573233	393	-60	89.73	33	34	1	1.39
		0010200	000		00.10	39	41	2	1.72
MMP318	394589	6573234	392	-60	89.73	77	78	1	5.15
		0010201	002			67	69	2	1.87
MMP319	394848	6573258	395	-60	89.73	34	36	2	1.49
MMP32	394238	6573755	391	-59	89.73	21	22	1	1.86
MMP320	394704	6573260	393	-60	89.73	14	15	1	10.3
MMP321	394587	6573258	392	-60	89.73	36	37	1	6.42
		0010200	002		00.70	69	70	1	2.72
MMP322	394561	6573258	391	-60	89.73	61	63	2	3.04
	004001	0070200	001		00.70	81	82	1	2.44
MMP324	394838	6573287	395	-60	89.73	22	23	1	2.84
		0010201	000		00.70	60	61	1	2.41
MMP326	394621	6573283	393	-60	89.73	46	49	3	2.07
	004021	0070200	000		00.70	54	55	1	3.98
MMP327	394572	6573285	392	-60	89.73	43	44	1	1.41
	004072	0070200	002		00.70	50	51	1	1.31
MMP328	394551	6573284	392	-60	89.73	66	67	1	4.12
1011011 320	004001	0373204	552	-00	03.75	98	100	2	4.12
MMP329	394847	6573314	395	-60	89.73	16	19	3	4.13
MMP33	394198	6573755	392	-59	89.73	26	27	1	2.03
MMP332	394782	6573334	395	-60	89.73	29	30	1	1.33
1011011 332	534702	0070004	535	-00	03.75	46	47	1	2.36
MMP333	394732	6573334	394	-60	89.73	37	39	2	1.38
MMP334	394640	6573330	393	-60	89.73	30	33	3	8.31
MMP335	394591	6573329	392	-60	89.73	18	21	3	2.61
	534531	0070029	552	-00	03.75	31	32	1	1.44
MMP336	394556	6573330	393	-60	89.73	19	21	2	14.55
MMP337	394521	6573331	392	-60	89.73	27	35	8	5.03
1011011 337	JJ4JZ I	0373331	552	-00	03.75	37	45	8	17.26
MMP338	394731	6573385	395	-60	89.73	36	41	5	1.75
MMP339	394592	6573382	392	-60	89.73	4	5	1	2.87
MMP34	394158	6573755	392	-59	89.73	76	78	2	4.43
MMP340	394511	6573380	392	-60	89.73	31	34	3	1.1
IVIIVIF 340	394311	0373360	392	-00	09.75	15	17	2	14.7
MMP341	394491	6573381	390	-60	89.73	40	42	2	1.84
WINF 341	394491	0373301	390	-00	09.75	28	31	3	1.74
MMP343	394802	6573412	395	-60	89.73	42	43	1	1.95
MMP344	201150	6572410	206	60	00.72	17	18	1	1.14
IVIIVIP344	394458	6573410	386	-60	89.73	29	33	4	1.07
MMP345	394780	6573434	395	-60	89.73	4	5	1	2.63
MMD247	204407	6572422	200	60	00.70	31	32	1	4.7
MMP347	394487	6573432	390	-60	89.73	35	36	1	1.48
	204407	6570405	207	60	00.70	54	56	2	14.1
MMP348	394467	6573435	387	-60	89.73	19	33	14	4.04
	204440	6570405	205	00	00.70	15	17	2	1.92
MMP349	394446	6573435	385	-60	89.73	19	20	1	1.23
MADOCO	004400	0570450		00	00.70	45	46	1	3.72
MMP350	394438	6573458	386	-60	89.73	73	74	1	1.25


	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	From (m)	To (m)	(m)	(g/t)
MMP351	394762	6573487	396	-60	89.73	46	50	4	2.86
MMP352	394741	6573485	396	-60	89.73	52	55	3	2.19
MMP353	394450	6573483	389	-60	89.73	36	37	1	1.41
MMP358	394621	6573184	393	-60	89.73	93	94	1	1.39
					00.10	35	44	9	1.42
MMP361	394809	6573260	396	-60	89.73	25	28	3	2.81
MMP362	394797	6573285	395	-60	89.73	14	17	3	2.53
						27	28	1	1.62
MMP364	394862	6573235	395	-60	89.73	34	35	1	2.63
						59	62	3	1.32
MMP365	394741	6573186	394	-60	89.73	25	26	1	1.11
						74 61	75 64	1	2.97
MMP366	394691	6573234	393	-60	89.73	61 68	69	1	1.24
						42	43	1	7.8
MMP369	394602	6573259	392	-60	89.73	32	33	1	1.66
						12	15	3	3.4
MMP37	394721	6573210	393	-60	89.73	36	37	1	1.55
						29	30	1	1.86
MMP370	394643	6573283	393	-60	89.73	21	25	4	2.03
						74	76	2	7.7
MMP371	394588	6573284	393	-60	89.73	62	64	2	2.46
						21	22	1	6.4
MMP372	394505	6573331	392	-60	89.73	38	39	1	2.6
			000			19	23	4	4.77
MMP373	394527	6573380	392	-60	89.73	79	80	1	4.85
	204474	0570000	200	00	00.70	59	62	3	6.58
MMP374	394471	6573382	388	-60	89.73	65	66	1	1.86
MMP376	394509	6573433	393	-60	89.73	18	21	3	4.84
MMP377	394426	6573435	384	-60	89.73	35	36	1	2.02
	534420	0070400	504	-00	03.75	48	49	1	2.55
MMP378	394401	6573458	387	-60	89.73	32	33	1	1.42
						35	36	1	1.16
MMP379	394530	6573483	393	-60	89.73	23	24	1	15.7
						27	28	1	1.29
MMP38	394770	6573211	395	-60	89.73	55	59	4	2.17
MMP380	394511	6573483	393	-60	89.73	32	33	1	1.96
MMP381	394491	6573483	392	-60	89.73	39 44	40	1	6.64
MMP382	394471	6573483	390	-60	89.73	31	48 33	4	1.89 6.19
IVIIVIF 302	394471	0373403	390	-00	09.75	44	45	1	1.21
MMP383	394525	6573507	393	-60	89.73	50	-43 54	4	1.19
						39	40	1	1.13
MMP384	394402	6573508	390	-60	89.73	51	52	1	1.18
						60	62	2	2.18
MMP385	394562	6573285	392	-60	89.73	84	87	3	7.5
	0.0.1.	0.5-0.5-5				33	34	1	1.28
MMP386	394547	6573309	393	-60	89.73	28	31	3	2.78
	204004	6570000	202	<u> </u>	00.70	33	34	1	4.33
MMP387	394661	6573328	393	-60	89.73	25	30	5	2.88
MMP388	394512	6573358	392	92 -60	89.73	2	4	2	1.48
	59451Z	0010000	592	-00	09.10	23	26	3	2.29
MMP389	394633	6573384	393	-60	89.73	40	41	1	31.7

	1				1				
Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
						44	50	6	8.24
MMP39	394780	6573311	395	-60	89.73	39	40	1	2.23
IVIIVIE 39	394700	0373311	395	-00	09.75	46	47	1	5.46
MMP390	394500	6573380	391	-60	89.73	29	31	2	4.26
1011017-390	394300	0073300	291	-00	09.75	21	24	3	4.1
MMP391	394757	6573285	395	-60	89.73	5	6	1	2.4
MINE 391	394737	0373203	395	-00	09.75	35	36	1	1.03
MMP392	394866	6573310	396	-60	89.73	10	11	1	2.3
MMP393	394801	6573310	395	-60	89.73	35	36	1	2.3
MMP394	394711	6573334	394	-60	89.73	24	25	1	3.62
MMP395	394686	6573334	394	-60	89.73	26	27	1	1.81
MMP396	394771	6573385	395	-60	89.73	19	20	1	1.74
	004771	0070000	000		00.70	14	17	3	3.83
MMP399	394611	6573383	392	-60	89.73	54	55	1	1.16
MMP4	394626	6573308	393	-90	359.73	9	10	1	3.28
	001020		000		000.10	16	21	5	2.38
MMP40	394745	6573310	394	-60	89.73	49	50	1	3.2
	004740	0070010	004		00.70	60	61	1	1.53
MMP400	394405	6573432	385	-60	89.73	42	43	1	1.86
MMP401	394790	6573485	395	-60	89.73	38	40	2	1.4
MMP402	394775	6573485	395	-60	89.73	40	41	1	1.39
MMP404	394820	6573510	394	-60	89.73	43	48	5	2.27
MMP405	394780	6573510	395	-60	89.73	52	54	2	1.6
MMP406	394652	6573224	393	-60	89.73	27	29	2	2.77
101101 400	004002	0373224	535	-00	03.75	44	46	2	12.33
MMP407	394797	6573235	396	-60	89.73	38	39	1	5.69
MMP408	394768	6573260	395	-60	89.73	29	30	1	3.13
MMP409	394865	6573210	394	-60	89.73	66	67	1	1.63
	004000	0070210	004		00.70	70	71	1	1.31
MMP410	394621	6573208	393	-60	89.73	26	28	2	2.11
	004021	0070200	000		00.70	72	74	2	1.54
MMP412	394842	6573235	395	-60	89.73	72	73	1	1.57
MMP414	394732	6573237	394	-60	89.73	39	40	1	1.63
						42	43	1	15.2
MMP418	394575	6573258	391	-60	89.73	71	72	1	1.06
						75	76	1	1.35
MMP419	394860	6573285	395	-60	89.73	20	21	1	1.98
MMP42	394666	6573309	393	-60	89.73	16	17	1	1.22
MMP420	394819	6573285	395	-60	89.73	62	63	1	2.47
						28	29	1	2.54
MMP421	394777	6573285	395	-60	89.73	35	36	1	3.59
						55	56	1	1.61
MMP423	394605	6573283	392	-60	89.73	49	52	3	3.46
						54	55	1	2.07
MMP424	394532	6573283	391	-60	89.73	41	42	1	1.95
	00.177.1				0.0 ==	88	90	2	1.77
MMP425	394724	6573309	394	-60	89.73	54	55	1	2.63
MMP426	394685	6573309	394	-60	89.73	32	33	1	1.02
MMP428	394490	6573332	390	-60	89.73	28	29	1	1.9
						37	38	1	1.34
MMP429	394701	6573359	394	-60	89.73	29	30	1	5.49
			000			33	35	2	1.39
MMP43	394626	6573308	393	-60	89.73	26	33	7	2.98

		1					1		
Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
						35	36	1	2.89
MMP430	394491	6572257	390	-60	89.73	40	41	1	5.53
101101F430	394491	6573357	390	-00	09.75	37	38	1	5.9
MMP432	394556	6573383	393	-60	89.73	10	15	5	3.21
MMP433	394451	6573382	385	-60	89.73	49	50	1	2.02
101011 435	334431	0070002	505	-00	03.75	56	58	2	3.37
MMP435	394501	6573407	391	-60	89.73	9	10	1	3.35
101101 400	004001	0070407			00.70	16	17	1	1.72
MMP436	394471	6573407	388	-60	89.73	27	28	1	1.82
					00.10	34	36	2	2.91
MMP437	394699	6573434	395	-60	89.73	53	56	3	3.08
MMP438	394873	6573335	396	-60	89.73	3	6	3	4.03
MMP439	394659	6573434	393	-60	89.73	82	86	4	3.86
MMP44	394722	6573358	395	-60	89.73	20	21	1	1.76
						28	29	1	1.59
MMP440	394533	6573433	394	-60	89.73	10	12	2	2.29
MMP442	394680	6573459	394	-60	89.73	65	66	1	1.55
						68	72	4	4.37
MMP443	394470	6573459	389	-60	89.73	34	36	2	10.28
MMP444	394722	6573484	396	-60	89.73	64	67	3	4.57
MMP445	394500	6573482	392	-60	89.73	49	50	1	2.22
MMP446	394480	6573482	391	-60	89.73	25	27	2	6.51
						57	61	4	1.49
MMP447	394740	6573509	396	-60	89.73	67	72	5	2.28
MMP449	394789	6573260	396	-60	89.73	30	33	3	2.04
	004004	0570050			00.70	40	42	2	3.46
MMP45	394681	6573359	394	-60	89.73	41	42	1	1.91
MMP450	394853	6573335	395	-60	89.73	17	21	4	1.77
MMP451	394607	6573408	393	-60	89.73	26	38	12	3.49
						42 24	44	2	1.56 2.33
MMP452	394457	6573432	386	-60	89.73		25		
MMP453	394820	6573485	394	-60	89.73	62 37	64 38	2	5.43 2.09
MMP453	394820	6573510	394	-60	89.73	43	44	1	10.65
1011017 434	394000	0373310	393	-00	09.75	43	44	1	1.23
MMP455	394470	6573332	388	-60	89.73	57	58	1	1.23
						77	78	1	1.33
MMP456	394431	6573382	383	-60	89.73	57	58	1	2.96
						68	72	4	3.69
MMP457	394413	6573407	383	-60	89.73	64	65	1	1.02
						35	38	3	2.28
MMP46	394641	6573361	393	-60	89.73	47	48	1	1.12
						24	27	3	3.01
MMP460	394803	6573460	395	-60	89.73	31	33	2	2.99
MMP461	394640	6573459	393	-60	89.73	82	88	6	5.38
MMP462	394413	6573383	381	-60	89.73	64	67	3	9.55
						34	35	1	1.05
MMP463	394834	6573461	395	-60	89.73	31	32	1	4.64
	204505	0570404	000	00	00.70	28	29	1	2.16
MMP464	394585	6573434	393	-60	89.73	34	35	1	3.88
MND465	201514	6570050	200	60	00.70	85	86	1	1.56
MMP465	394541	6573258	389	-60	89.73	106	107	1	1.67
MMP466	394590	6573182	392	-60	89.73	69	74	5	2.9

	1		1		1	1	1		
Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
						84	87	3	3.14
MMP468	394841	6573335	395	-60	89.73	21	22	1	1.28
MMP469	394390	6573383	381	-60	89.73	79	82	3	2.43
						72	73	1	2.3
MMP47	394602	6573361	392	-60	89.73	2	6	4	2.77
						61	62	1	1.08
MMP470	394800	6573434	395	-60	89.73	19	20	1	1.2
MMP471	394844	6573487	394	-60	89.73	28	29	1	1.04
MMP473	394456	6573507	390	-60	89.73	29	30	1	5
MMP475	394499	6573557	392	-60	89.73	12 63	15 64	3	1.25 1.3
MMP48	394555	6573358	393	-60	89.73	52	53	1	2.34
						31	32	1	1.95
MMP480	394253	6573753	391	-60	89.73	34	35	1	1.11
						21	22	1	1.46
MMP49	394522	6573349	392	-60	89.73	25	26	1	1.58
MMP5	394577	6573309	393	-59	89.73	22	24	2	2.32
						21	24	3	2.1
MMP50	394822	6573412	395	-60	89.73	31	32	1	7.79
MMP51	394782	6573412	395	-60	89.73	16	17	1	1.45
MMP52	394743	6573411	396	-60	89.73	27	31	4	2.49
MMP53	394703	6573411	395	-60	89.73	57	59	2	2.25
MMP54	394663	6573410	394	-60	89.73	59	65	6	2.41
	004000	0070410	004	-00	00.70	67	68	1	1.69
MMP55	394626	6573410	393	-60	89.73	29	30	1	1.08
MMP56	394585	6573410	393	-60	89.73	5	6	1	12.8
MMP57	394549	6573409	393	-60	89.73	20	26	6	3.94
						10	12	2	7.06
MMP6	394557	6573309	393	-90	359.73	54 40	55 41	1	1.32 1.69
						23	24	1	1.14
MMP60	394479	6573355	389	-60	89.73	39	40	1	5.52
						68	69	1	1.53
MMP61	394440	6573357	383	-60	89.73	73	74	1	7.32
MMP62	394505	6573460	393	-60	89.73	65	66	1	2.18
	204459	6572459	200	60	00.72	33	34	1	2.62
MMP63	394458	6573458	388	-60	89.73	49	51	2	12.26
MMP64	394421	6573451	385	-60	89.73	54	56	2	8.68
MMP65	394386	6573457	388	-60	89.73	42	43	1	1.28
					00.10	62	63	1	1.1
MMP66	394343	6573456	391	-60	89.73	75	76	1	5.17
MMP68	394701	6573456	395	-60	89.73	53	54	1	1.48
	204004	0570450	202		00.70	56	60	4	2.33
MMP69	394661 394621	6573458	393	-60	89.73	77	80 1	3	5.21 1.59
MMP70	J34021	6573458	392	-60	89.73	0 29	31	2	27.72
MMP72	394545	6573504	393	-60	89.73	41	44	3	3.3
MMP75	394424	6573508	389	-60	89.73	78	79	1	6.88
						45	46	1	1.14
MMP76	394385	6573506	391	-60	89.73	60	61	1	1.63
MMP81	394519	6573558	393	-60	89.73	11	14	3	2.56
	394319	0373338	333	-00	09.73	49	51	2	1.93
MMP83	394439	6573557	390	-60	89.73	29	30	1	8.8

Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
						64	67	3	3.93
	394559	6573658	391	60	89.73	66	67	1	1.4
MMP90	394009	0073000	391	-60		75	76	1	2
MMP94	394399	6573657	392	-60	89.73	28	29	1	6
MMP9A	394502	02 6573409	392	-60	89.73	7	9	2	6.15
IVIIVIP9A 394502	394302					24	25	1	3.43
PD1 394	394645	6573152	394	-60	44.73	20	21	1	1.38
	394040					25	27	2	2.05

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		MOA					F rom	Те	listemiel	
11NMRC362 389100.795 6573429.97 391.28 -60 180 13 17 4 1.4 11NMRC363 389101.033 6573411.47 391.27 -60 180 9 10 1 1.7 11NMRC364 389100.108 6573389.67 391.29 -60 180 26 33 7 4.08 11NMRC355 389094.013 6573265.59 390.58 -60 180 26 33 7 4.08 11NMRC357 389094.013 6573265.59 390.58 -60 180 39 48 9 3.16 11NMRC359 389091.512 6573265.03 390.42 -60 180 50 51 1 1.83 11NMRC360 389091.926 657307.52 391.7 -60 180 28 29 1 1.49 11NMRC378 389158.158 6573249.03 390.41 60 180 12 1 1.77 11NMRC384 389151.272 65	Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
11NMRC352 389100.795 6573429.97 391.28 -60 180 20 25 5 3.41 11NMRC353 389101.033 6573411.47 391.27 -60 180 9 10 1 1.7. 11NMRC354 389100.108 6573389.67 391.29 -60 180 8 144 6 1.18 11NMRC356 389094.013 6573266.05 390.73 -60 180 29 30 1 1.45 11NMRC356 389094.013 6573262.01 390.42 -60 180 50 51 1 3.11 11NMRC368 389091.512 6573262.03 390.42 -60 180 50 51 1 1.93 11NMRC366 389091.526 657300.26 399.42 -60 180 28 29 1 1.32 11NMRC368 389158.158 6573205.2 391.17 -60 180 32 33 1 1.81 11MMRC381 389158.158 6573207.52 390.4 -60 180 32 33 1 <	11NMDD001	389099.822	6573368.15	390.32	-55	180	20.4	20.8	0.4	1.04
11NMRC363 389101.033 6673411.47 391.27 -60 180 9 10 1 1.7 11NMRC364 389100.108 6573389.67 391.29 -60 180 26 33 7 4.08 11NMRC356 389094.488 6573266.05 390.73 -60 180 26 33 7 4.08 11NMRC357 389094.013 6573266.59 390.58 -60 180 50 61 1 3.11 11NMRC358 389093.602 6573266.29 390.45 -60 180 50 61 1 1.68 11NMRC360 389091.512 6573262.01 390.62 -60 180 50 51 1 1.93 11NMRC360 389091.526 657327.54 391.54 -60 180 22 23 24 1 6.73 11NMRC377 389158.158 6573249.08 390.47 -60 180 32 33 1 1.56 11NMRC383	11NMRC352	389100 795	6573429.97	301 28	-60	180	13	17	4	1.4
11NMRC353 389101.03 6673411.47 391.27 -60 180 13 14 1 2.32 11NMRC354 389100.108 6573389.67 391.29 -60 180 26 33 7 4.08 11NMRC356 389094.488 6573286.55 390.73 -60 180 29 30 1 1.45 11NMRC358 389091.512 6573265.59 390.45 -60 180 50 51 1 3.16 11NMRC360 389092.508 6573208.08 390.43 -60 180 50 51 1 1.93 11NMRC366 389091.926 6573208.08 390.42 -60 180 23 24 1 6.73 11NMRC377 389158.921 657327.52 391.7 -60 180 28 29 1 1.32 11NMRC381 389156.781 657327.52 391.7 -60 180 29 30 1 5.66 11NMRC382 389153.72	111101100002	303100.733	0070420.07	001.20		100	20	25	5	3.41
INMRC354 389100.108 6573389.67 391.29 -60 180 8 144 6 1.18 11NMRC356 389094.488 6573380.65 390.73 -60 180 26 33 7 4.08 11NMRC357 389094.013 6573266.59 390.58 -60 180 50 51 1 3.11 11NMRC358 389093.602 6573266.59 390.45 -60 180 50 51 1 3.11 11NMRC360 389092.508 657326.01 390.45 -60 180 50 51 1 1.188 11NMRC360 389091.52 6573208.08 390.43 -60 180 50 51 1 1.133 11NMRC378 389158.921 6573327.54 391.7 -60 180 22 2 1 1.77 11NMRC381 389156.781 6573207.52 391.7 -60 180 29 30 1 5.66 11NMRC383 389153.7	11NMRC353	389101 033	6573411 47	391 27	-60	180	9	10	1	1.7
11NMRC354 389100.108 6673389.67 391.29 -60 180 26 33 7 4.08 11NMRC356 389094.488 6573286.05 390.73 -60 180 29 30 1 1.45 11NMRC357 389094.013 6573265.59 390.45 -60 180 50 51 1 3.11 11NMRC358 389091.512 657326.01 390.62 -60 180 50 51 1 1.88 11NMRC360 389092.508 6573208.08 390.43 -60 180 50 51 1 1.93 11NMRC360 389091.926 6573307.52 391.54 -60 180 28 29 1 1.32 11NMRC378 389158.156 6573307.52 391.17 -60 180 22 30 1 5.66 11NMRC381 389156.781 657326.87 390.4 -60 180 10 11 1 1.91 1.91 1.91 1.91		000101.000	00/0411.4/	001.27		100	13	14	1	2.32
INMRC365 389094.488 6573286.05 390.73 -60 180 28 30 1 1.45 11NMRC357 389094.013 6573265.59 390.86 -60 180 50 51 1 3.11 11NMRC358 389093.602 6573246.29 390.45 -60 180 50 51 1 3.11 11NMRC356 389091.512 6573208.08 390.43 -60 180 50 51 1 1.93 11NMRC366 389091.926 6573090.26 389.42 -60 180 50 51 1 1.93 11NMRC366 389091.926 657307.52 391.7 -60 180 12 1 1.77 11NMRC383 389156.78 6573268.59 391.17 -60 180 12 3.77 1.91 1.91 11NMRC383 389156.78 6573207.52 390.4 -60 180 14 42 1 1.42 11NMRC383 389152.43 <t< td=""><td>11NMRC354</td><td>389100 108</td><td>6573389.67</td><td>391 29</td><td>-60</td><td>180</td><td>8</td><td>14</td><td>6</td><td>1.18</td></t<>	11NMRC354	389100 108	6573389.67	391 29	-60	180	8	14	6	1.18
11NMRC356 389094.48 6573266.55 390.58 60 180 41 45 4 3.9 11NMRC357 389094.013 6573265.59 390.58 60 180 50 51 1 3.11 11NMRC358 389091.512 6573266.01 390.62 -60 180 50 51 1 1.68 11NMRC366 389091.526 6573208.08 390.43 -60 180 50 51 1 1.93 11NMRC366 389091.926 657307.52 391.4 -60 180 22 29 1 1.49 11NMRC378 389158.156 6573268.59 391.17 -60 180 32 33 1 1.81 11NMRC381 389156.781 6573226.87 390.4 -60 180 10 11 1 1.91 11NMRC382 389153.727 6573267.52 390.4 -60 180 26 27 1 1.66 11NMRC384 389152.722 </td <td></td> <td></td> <td></td> <td>001.20</td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td></td>				001.20		100				
INNRC37 38994.01 6573265.59 390.58 60 180 50 51 1 3.11 11NMRC358 389093.602 6573246.29 390.45 -60 180 39 48 9 3.16 11NMRC358 389091.512 6573226.01 390.62 -60 180 5 6 1 1.83 11NMRC366 389091.926 6573208.08 390.43 -60 180 28 29 1 1.43 11NMRC366 389091.926 657327.54 391.54 -60 180 22 29 1 1.32 11NMRC377 389158.158 657327.54 391.54 -60 180 22 30 1 5.66 11NMRC381 389156.781 6573268.59 391.17 -60 180 10 11 1 1.91 11NMRC381 389156.781 6573268.59 390.41 -60 180 10 11 1.69 11NMRC382 389153.727 6573	11NMRC356	389094.488	6573286.05	390.73	-60	180				
11NMRC358 389093.602 6573246.29 390.45 -60 180 39 48 9 3.16 11NMRC359 389091.512 6573226.01 390.62 -60 180 5 6 1 1.88 11NMRC360 389091.926 6573208.08 390.43 -60 180 50 51 1 1.93 11NMRC366 389091.926 6573090.26 389.42 -60 180 28 29 1 1.49 11NMRC377 389158.158 6573307.52 391.7 -60 180 32 33 1 1.81 11NMRC380 389156.781 6573268.59 390.49 -60 180 19 20 1 3.77 11NMRC382 389153.727 6573207.52 390.27 -60 180 19 20 1 3.77 11NMRC385 389152.722 6573167.33 390.11 -60 180 14 15 1 1.24 11NMRC384 389152										
11NMRC369 389091.512 6573226.01 390.62 -60 180 5 6 1 1.68 11NMRC360 389092.508 6573208.08 390.43 -60 180 50 51 1 1.93 11NMRC366 38901.926 6573000.26 389.42 -60 180 23 24 1 6.73 11NMRC377 389158.921 6573327.54 391.54 -60 180 28 29 1 1.32 11NMRC378 389158.158 6573307.52 391.7 -60 180 32 33 1 1.81 11NMRC380 389156.781 6573268.59 391.17 -60 180 29 30 1 5.66 11NMRC382 389153.727 6573226.87 390.4 -60 180 10 11 1 1.91 11NMRC382 389153.727 6573207.52 390.27 -60 180 41 42 1 1.24 11NMRC384 389152.46										
111NMRC359 389091.512 6573226.01 390.62 -60 180 10 11 1 1.93 11NMRC360 389092.508 6573020.08 390.43 -60 180 50 51 1 1.93 11NMRC366 389091.926 6573020.26 389.42 -60 180 28 29 1 1.49 11NMRC377 389158.921 6573327.54 391.57 -60 180 32 33 1 1.81 11NMRC378 389158.781 6573268.59 391.17 -60 180 32 33 1 1.81 11NMRC381 389156.781 6573268.59 391.17 -60 180 10 11 1 1.91 11NMRC382 389153.727 657326.752 390.4 -60 180 10 11 1.69 11NMRC383 389152.727 6573207.52 390.27 -60 180 7 8 1 9.98 11NMRC384 389152.722 6573187.33 390.66 -60 180 14 15 1 1.72	11NMRC358	389093.602	6573246.29	390.45	-60	180				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11NMRC359	389091.512	6573226.01	390.62	-60	180				
11NMRC366 389091.926 6573090.26 389.42 -60 180 28 29 1 1.49 11NMRC377 389158.921 6573327.54 391.54 -60 180 28 29 1 1.32 11NMRC377 389158.158 6573327.54 391.54 -60 180 32 33 1 1.32 11NMRC380 389156.781 6573268.59 391.17 -60 180 29 30 1 5.66 11NMRC381 389156.855 6573226.87 390.4 -60 180 19 20 1 3.77 11NMRC382 389153.727 6573207.52 390.27 -60 180 41 42 1 1.42 11NMRC384 389152.722 6573187.33 390.11 -60 180 7 8 1 9.98 11NMRC386 389152.463 6573169.34 390.06 -60 180 14 15 1 1.42 11NMRC388 389150.										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11NMRC360	389092.508	6573208.08	390.43	-60	180				
11NMRC377 389158.921 6573327.54 391.54 -60 180 28 29 1 1.32 11NMRC378 389158.158 6573327.52 391.7 -60 180 32 33 1 1.81 11NMRC380 389156.781 6573268.59 391.17 -60 180 29 30 1 5.66 11NMRC381 389156.855 6573249.08 390.49 -60 180 10 11 1 1.91 11NMRC382 389153.994 6573226.87 390.4 -60 180 10 11 1.42 11NMRC383 389152.722 6573187.33 390.11 -60 180 26 27 1 1.56 11NMRC384 389152.722 6573169.34 390.06 -60 180 14 15 1 1.72 11NMRC386 389151.356 6573147.46 389.69 -60 180 15 16 1 3.31 11NMRC386 389149.438 <	11NMRC366	389091.926	6573090.26	389.42	-60	180				
11NMRC377 389158.921 6573327.54 391.54 -60 180 1 2 1 1.77 11NMRC378 389158.158 6573307.52 391.7 -60 180 32 33 1 1.81 11NMRC380 389156.781 6573268.59 391.17 -60 180 29 30 1 5.66 11NMRC381 389156.855 6573249.08 390.49 -60 180 10 11 1 1.91 11NMRC382 389153.994 6573226.87 390.4 -60 180 41 42 1 1.42 11NMRC383 389152.727 6573207.52 390.27 -60 180 7 8 1 9.98 11NMRC384 389152.722 6573167.33 390.11 -60 180 7 8 1 9.98 11NMRC384 389152.463 6573169.34 390.06 -60 180 14 17 3 2.07 11NMRC388 389151.356 6573107.94 389 -60 180 15 16 1 3.31										
11NMRC378 389158.158 6573307.52 391.7 -60 180 32 33 1 1.81 11NMRC380 389156.781 6573268.59 391.17 -60 180 29 30 1 5.66 11NMRC381 389156.781 6573249.08 390.49 -60 180 10 111 1 1.91 11NMRC382 389153.727 6573207.52 390.27 -60 180 44 45 1 1.24 11NMRC384 389152.722 6573187.33 390.11 -60 180 7 8 1 9.98 11NMRC384 389152.722 6573187.33 390.06 -60 180 7 8 1 9.98 11NMRC385 389152.463 6573169.34 390.06 -60 180 14 17 3 2.07 11NMRC388 389150.43 6573088.15 388.8 -60 180 15 16 1 3.31 11NMRC389 389148.53	11NMRC377	389158.921	6573327.54	391.54	-60	180				
11NMRC380 389156.781 6573268.59 391.17 -60 180 29 30 1 5.66 11NMRC381 389156.855 6573249.08 390.49 -60 180 10 11 1 1.91 11NMRC382 389153.994 6573226.87 390.4 -60 180 10 11 1 1.91 11NMRC383 389153.727 6573207.52 390.27 -60 180 44 45 1 1.24 11NMRC384 389152.722 6573187.33 390.11 -60 180 7 8 1 9.98 11NMRC385 389152.463 6573149.34 390.06 -60 180 14 17 3 2.07 11NMRC386 389150.43 6573088.15 388.8 -60 180 15 16 1 3.31 11NMRC388 389149.438 6573088.15 388.8 -60 180 0 1 1 1.03 11NMRC389 389149.438 </td <td></td>										
11NMRC381 389156.855 6573249.08 390.49 -60 180 10 11 1 1.91 11NMRC382 389153.994 6573226.87 390.4 -60 180 41 42 1 1.42 11NMRC382 389153.727 6573207.52 390.27 -60 180 44 45 1 1.24 11NMRC384 389152.722 6573187.33 390.11 -60 180 7 8 1 9.98 11NMRC385 389152.463 6573169.34 390.06 -60 180 14 15 1 1.72 11NMRC386 389151.356 6573147.46 389.69 -60 180 14 17 3 2.07 11NMRC388 389150.43 6573088.15 388.8 -60 180 25 26 1 1.24 11NMRC389 389149.438 6573088.23 388.56 -60 180 0 1 1 1.03 11NMRC390 389148.438<										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11NMRC380	389156.781	6573268.59	391.17	-60	180				
11NMRC382 389153.994 6573226.87 390.4 -60 180 41 42 1 1.42 11NMRC383 389153.727 6573207.52 390.27 -60 180 44 45 1 1.69 11NMRC384 389153.727 6573207.52 390.27 -60 180 44 45 1 1.24 11NMRC384 389152.722 6573187.33 390.11 -60 180 7 8 1 9.98 11NMRC385 389152.463 6573169.34 390.06 -60 180 14 17 3 2.07 11NMRC386 389151.356 6573147.46 389.69 -60 180 15 16 1 3.31 11NMRC388 389150.43 6573088.15 388.8 -60 180 25 26 1 1.24 11NMRC389 389149.438 6573088.15 388.8 -60 180 35 36 1 1.74 12HTDD001 389148.533	11NMRC381	389156.855	6573249.08	390.49	-60	180				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
11NMRC383 389153.727 6573207.52 390.27 -60 180 44 45 1 1.24 11NMRC384 389152.722 6573187.33 390.11 -60 180 7 8 1 9.98 11NMRC384 389152.722 6573187.33 390.11 -60 180 7 8 1 9.98 11NMRC385 389152.463 6573169.34 390.06 -60 180 14 17 3 2.07 11NMRC386 389151.356 6573147.46 389.69 -60 180 15 16 1 3.31 11NMRC388 389150.43 657307.94 389 -60 180 25 26 1 1.24 11NMRC389 389149.438 6573068.23 388.56 -60 180 0 1 1 1.03 11NMRC390 389148.533 6573068.23 30.84 -60 181.73 17 19.7 2.7 1.37 AHTRC001 389145.604	11NMRC382	389153.994	6573226.87	390.4	-60	180				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
11NMRC384 389152.722 6573187.33 390.11 -60 180 7 8 1 9.98 11NMRC385 389152.463 6573169.34 390.06 -60 180 14 15 1 1.72 11NMRC385 389152.463 6573169.34 390.06 -60 180 14 17 3 2.07 11NMRC386 389151.356 6573147.46 389.69 -60 180 15 16 1 3.31 11NMRC388 389150.43 6573088.15 388.8 -60 180 25 26 1 1.24 11NMRC390 389149.438 6573088.15 388.8 -60 180 0 1 1 1.03 11NMRC300 389148.533 6573068.23 388.56 -60 180 35 36 1 1.74 12HTDD001 389128.929 6573268.52 390.84 -60 181.73 17 19.7 2.7 1.37 AHTRC002 38913	11NMRC383	389153.727	6573207.52	390.27	-60	180				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11NMRC384	389152.722	6573187.33	390.11	-60	180				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11NMRC385	389152.463	6573169.34	390.06	-60	180				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		200454.250	05704.47.40	200.00		400				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		303103.370	0070201.10	307.0	-01.01	40.000				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AHTRC006	389145.604	6573271.45	388.3	-60.05	47.555				
AHTRC009 389097.098 6573293.36 386.34 -60.34 45.115 30 38 8 3.39 AHTRC010 389117.753 6573314.62 386.34 -61.05 43.775 19 20 1 1.74 24 29 5 7.48	AHTRC008	389075 137	6573272.26	386 34	-60.07	45 415				
AHTRC009 389097.098 6573293.36 386.34 -60.34 45.115 46 47 1 4.39 AHTRC010 389117.753 6573314.62 386.34 -61.05 43.775 19 20 1 1.74 24 29 5 7.48	741110000	000070.107	0010212.20	000.04	00.07	-0.+10				
AHTRC010 389117.753 6573314.62 386.34 -61.05 43.775 19 20 1 1.74 24 29 5 7.48 13 14 1 1.81	AHTRC009	389097.098	6573293.36	386.34	-60.34	45.115				
AHTRC010 389117.753 6573314.62 386.34 -61.05 43.775 24 29 5 7.48 Image: Comparison of the second s										
	AHTRC010	389117.753	6573314.62	386.34	-61.05	43.775				
AHTRC011 389138.409 6573335.84 386.34 -61.45 45.775 17 18 1 1.04	AHTRC011	389138.409	6573335.84	386.34	-61.45	45.775				
63 64 1 1.07										
HTC001 389124.561 6573197.28 390.37 -55.18 184.815 46 47 1 5.89	HTC001	389124.561	6573197.28	390.37	-55.18	184.815				
	HTC002	389118.785	6573238.31	390.28	-55.03	181.815	14	15	1	10.8

Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
						39	42	3	2.41
	200427.20	0570077.07	200.44	FF 70	404 445	28	29	1	2.61
HTC003	389127.39	6573277.67	390.44	-55.72	181.115	32	37	5	1.43
HTC004	389119.816	6573314.22	390.39	-55.3	180.555	14	15	1	2.44
H1C004	369119.610	0575514.22	390.39	-00.0	160.555	30	38	8	3.99
HTC005	389129.696	6573356.09	390.5	-54.65	182.425	19	20	1	3.67
1110005	309129.090	0575550.09	390.5	-54.05	102.423	31	32	1	1.89
HTC006	389130.661	6573396.5	390.67	-55.79	178.485	6	10	4	1.55
HTC008	389075.302	6573240.44	389.79	-55.33	180.695	34	35	1	1.28
1110008	389073.302	0575240.44	309.79	-55.55	100.095	45	46	1	2.28
HTC013	389061.765	6573356.78	389.1	-55.62	182.545	40	41	1	2.61
1110013	303001.703	0575550.70	505.1	-55.02	102.040	54	55	1	1.16
HTC014	389067.925	6573397.76	389.19	-55.69	181.955	61	62	1	1.15
1110014	303007.323	0575597.70	303.13	-55.05	101.355	38	40	2	1.83
HTC017	389028.491	6573436.66	388.38	-55.9	179.335	99	100	1	1.04
	303020.431	0070400.00	000.00	00.0	175.555	65	66	1	1.57
HTC022	389024.184	6573391.12	388.37	-55	184.155	106	107	1	1.4
NMRC001	389052.02	6573319.96	385.93	-60.4	46.735	37	42	5	9.27
	303032.02	0070010.00	000.00	00.4	40.700	45	46	1	2.45
NMRC005	389113.02	6573254.95	388.36	-60.2	47.935	20	27	7	6.94
	303113.02	0070204.00	000.00	00.2	47.000	54	55	1	1.29
NMRC034	389011.55	6573278.09	385.8	-59.8	50.035	81	83	2	4.5
	000011.00	0010210.00	000.0	00.0	00.000	88	90	2	2.22
NMRC035	388915.25	6573327.76	385.29	-60	49.835	116	118	2	1.14
	300313.23	0010021.10	000.20	00	+5.000	122	123	1	6.25
NMRC036	388960.12	6573369.46	386.21	-60.5	49.435	86	87	1	23.7
NMRC037	388996.42	6573404.36	386.07	-60.3	46.935	95	98	3	2
		0010404.00	000.07	00.0	-0.000	101	104	3	12.56
NMRC054	388934.85	6573449.69	385.15	-55	134.635	128	129	1	1.24
NMRC055	389116.35	5 6573167.38	387.91	-55	134.635	20	22	2	2.77
					101.000	49	50	1	1.27

Rowe's Find Historical Significant RC and Diamond Drilling Intercepts Related to the Mineral Resource

Hole ID	MGA East	MGA North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
IRFD0002	484561	6588160	379	-60	150.8	97.9	100	2.1	1.23
						88	89	1	1.24
IRFRC001	484663	6588067	379	-60	150.8	95	99	4	6.69
						145	146	1	1.06
IRFRC002	484629	6588138	379	-60	150.8	156	157	1	3.52
IRFRC003	484633	6588045	376	-60	150.8	79	80	1	1.75
IRFRC004	484612	6588083	377	-60	150.8	41	56	15	7.44
RFDDH1	484589	6588092	376	-60	150	67	70	3	7.46
DEDDUK	40.4057	0507000	070		450	46	47	1	5.13
RFDDH2	484657	6587992	376	-60	150	54	59	5	4.44
DEDOOS	10.15.10	0507005	070		450	13	14	1	1.12
RFRC05	484540	6587995	376	-60	150	17	18	1	1.55
RFRC06	484520	6588030	376	-60	150	48	50	2	3.65
RFRC07	484557	6588005	376	-60	150	16	19	3	15.76
DEDOOO	40.4500	0500000	070		450	39	40	1	3.39
RFRC08	484538	6588039	376	-60	150	46	48	2	1.11
RFRC09	484574	6588014	376	-60	150	21	22	1	1.02
						39	44	5	2.59
RFRC10	484547	6588052	376	-60	150	47	48	1	2.87
						53	55	2	13.28
RFRC11	484595	6588026	376	-60	150	6	12	6	45.67
RFRC12	484572	6588059	376	-60	150	49	53	4	1.69
RFRC14	484590	6588069	376	-60	150	49	53	4	3.4
RFRC16	484641	6588022	376	-60	150	39	49	10	10.52
RFRC19	484625	6588089	376	-60	150	59	60	1	1.08
						21	22	1	3.47
RFRC26	484600	6588052	376	-61.8	148.7	29	36	7	2.76
						89	90	1	2.56
						22	26	4	5.63
RFRC27	484617	6588062	376	-60	149.7	36	41	5	2.82
						45	48	3	5.44
RFRC29	484592	6588106	379	-60.3	149.9	72	78	6	5.83
RFRC30	484557	6588086	376	-62.1	150.6	69	71	2	2.3
KFRC30	404557	0300000	370	-02.1	150.0	75	77	2	4.63
RFRC33	484522	6588069	376	-61.5	152.4	50	64	14	2.45
RFRC34	484574	6588077	376	-61.9	150.3	54	57	3	1.12
1111054	404374	0300077	570	-01.5	130.5	62	64	2	27.6
RO0002	484541	6588013	376	-60	150	30	31	1	1.56
RO0003	484548	6588021	376	-60	150	28	35	7	1.48
RO0004	484556	6588027	376	-60	150	29	34	5	3.92
RO0005	484565	6588032	376	-60	150	29	34	5	9.49
RO0006	484575	6588037	376	-60	150	33	35	2	3.01
RO0007	484583	6588042	376	-60	150	32	38	6	7.69
RO0010	484676	6587960	376	-60	150	19	26	7	1.32
						37	38	1	1.32
RO0011	484667	6587955	376	-60	150	25	26	1	1.04
RO0015	484657	6587932	376	-60	150	20	21	1	1.42
RO0018	484596	6588004	376	-60	150	20	21	1	1.88
RO0020	484697	6587943	376	-60	150	20	23	3	1.33