ASX Announcement 24 July 2020

Black Cat Syndicate Limited ("**Black Cat**") is pleased to announce details of planned drilling for the September 2020 quarter. The program will be focussing on ounces that could be mineable in the near term and therefore upgrading and increasing our 2012 JORC Mineral Resources ("**Resources**"). Black Cat has set itself a short-term strategic target of 1Moz in Resources to achieve genuine scale.

HIGHLIGHTS

- Drilling has commenced this week with >15,000m of RC planned for the September 2020 quarter.
- High priority targets have been identified at multiple prospects including Imperial/Majestic, Fingals Fortune and Rowe's Find.
- First assays are expected in late August 2020.
- Approval for drilling programs at Imperial/Majestic and Fingals Fortune have been received.
- RC drilling is expected to be continuous until the end of 2020.
- Resources will be grown, upgraded and released on a regular basis commencing October 2020.

Black Cat's Managing Director, Gareth Solly, said: "We are targeting 1Moz in Resources in the short-term. Our initial review of Fingals and Rowe's Find has identified the highest priority targets based on ounces that could be mineable in the near term. Hence, we are initially looking upgrade Inferred Resources to to Indicated, extend existing Resources and add new Resource in areas of known mineralisation. Drilling has commenced will be ongoing through the and September and December 2020 guarters. First assays are expected in late August

Figure 1: Black Cat's Fingals and Bulong Gold Projects.

2020. We will be announcing the growth and upgrade of our Resources on a regular rolling basis, commencing October 2020."

BLACK CAT SYNDICATE LIMITED (ASX:BC8)

Suite 6, 16 Nicholson Road Subiaco WA 6008 PO Box 572, Floreat WA 6014 T | +61 458 007 713 E | admin@blackcatsyndicate.com.au W | www.blackcatsyndicate.com.au ABN | 63 620 896 282

DIRECTORS

Paul ChapmanNon-Executive ChairmanGareth SollyManaging DirectorLes DavisNon-Executive DirectorAlex HewlettNon-Executive DirectorTony PolglaseNon-Executive Director

CORPORATE STRUCTURE

Ordinary shares on issue: 109.4M Market Capitalisation: A\$89M (Share price A\$0.815) Cash (after placement): ~A\$12M

Imperial and Majestic (M25/350, M25/360, P25/2641, P25/2248, P25/2249 and P25/2323) 100%

Imperial and Majestic have strong potential of increases in Resource as follows:

- near mine depth and strike extensions to both Imperial and Majestic (Figures 2 and 4);
- mineralised satellite deposits that have been drilled but not yet converted to Resources (Figure 2); and
- untested potential along strike and to the north of Imperial (Figure 2 and 4).

The priority for the September 2020 quarter will be to infill and test for near mine extensions of existing Resources. All necessary approvals have now been received to commence drilling. Further details are below.

Figure 1: Map of Imperial/Majestic with drill targets: the green area represents near mine extensions; the orange area represents untested northern strike extensions; and the yellow areas are mineralised satellite deposits. Collars with max Au downhole are included.

Figure 2: Map of Imperial/Majestic with RC and diamond drilling (RAB and AC excluded).

Near Mine Depth and Strike Extensions of Both Imperial and Majestic

A review of drilling below the Majestic open pit indicates that the high-grade structures are more continuous than previously modelled. Accordingly, drilling will infill the existing Resources to confirm continuity and to extend the previously defined underground potential.

The current Resources are constrained only by drilling. Therefore, extensional drilling will be undertaken to test for the continuation of high-grade mineralisation at depth and along strike.

Better intercepts within the Resources and below the open pits at Majestic include:

- 7m @ 11.69 g/t Au from 152m downhole (IMRC123D);
- 9m @ 6.15 g/t Au from 136m downhole (IMRC278); and
- 4.3m @ 14.98 g/t Au from 232m downhole (IMRC230D).

And at Imperial:

- 5m @ 28.03 g/t Au from 104m downhole (IMRC5050);
- 5m @ 20.59 g/t Au from 73m downhole (IMRC5124); and
- 3m @ 8.41 g/t Au from 202m downhole (IIRC0022).

Areas of planned extension drilling at Imperial and Majestic are shown in Figure 3. The program will target depth extensions at Imperial and test plunge extensions to high-grade mineralisation to the south of Majestic.

Figure 3: Long section of Imperial/Majestic showing current Resources and previous drilling. Drill target zones are shown in yellow boxes. The Resources are open down dip and along strike.

Mineralised Satellite Deposits Not Yet Converted to Resources

As shown on Figure 2, there are three mineralised deposits that have seen various levels of historic drilling; Crown, Jones Find and Jones Find South. Most likely due to prevailing gold price, Resources were not formally calculated for these deposits and drilling was discontinued. These deposits appear geologically analogous to Imperial/Majestic, being shears within a diorite. The deposits are already known to contain mineralisation and represent drill ready targets that can potentially be rapidly converted into Resources (Figure 1).

Untested Potential Along Strike and to the North of Imperial

The greater Imperial and Majestic area, at first glance, appears to have been extensively drilled. However, 57% of exploration holes were RAB or AC with holes drilled to an average depth of only 44m (Figure 1 and Figure 2).

The previous method of exploration at Imperial and Majestic included systematic RAB drilling on a grid of ~50m (easting) by 100m (northing) down to an average depth of 44m. However, the area exhibits a 30-40m stripped profile and shallow RAB drilling is unlikely to be effective. Indeed, the main Imperial lode sits directly below a RAB intercept of <1 g/t Au.

The northern strike extent of Imperial (Figure 2) is therefore considered open and prospective, with RC drilling proposed to test for high grade mineralisation within the country rock. Testing along strike north of Imperial is planned after the September 2020 quarter. In the interim, an in-depth review of the extensive geophysical data over the area will be used for targeting.

Fingals Fortune (M26/357, M26/148, M26/248 and M26/364) 100%

Fingals Fortune sits on granted Mining Leases and was mined in the early 1990's. Historical mining extracted ~420,000t @ 2.7 g/t Au for 36,500 oz from the Fingals Fortune open pit and another 20,200 oz from three nearby satellite pits¹. Fingals Fortune strikes north/north-west and dips shallowly to the west. The current Resource (1.2Mt @ 2.3 g/t Au for 88,000 oz) is open along strike and at depth.

Fingals Fortune has seen little exploration in the past thirty years. Numerous high priority drill ready targets have been identified as shown in yellow on Figure 4. Drilling planned for the September 2020 quarter will infill to upgrade the current Resource and target depth and strike extensions. Intercepts outside of the current Resource include:

- 2m @ 10.73 g/t Au from 51m downhole (FIRC003); and
- 3m @ 12.88 g/t Au from 73m downhole (FIRC006).

Eastern Fingals (M26/357, M26/148, M26/248 and M26/364) 100%

Three satellite pits, Sibu, Baguss and Futi Baguss sit 1km east of Fingals Fortune (Figure 4) and produced >20,000 oz from shallow oxide pits in the early 1990's. Further south is New Bau which also has good potential to add to Resources. Limited drilling has occurred at these deposits since mining and historic drilling indicates potential strike and dip extensions.

Drilling at these deposits is planned to follow on from Fingals Fortune.

Black C

¹ Refer Mount Monger Gold Project – Exploration Data Summary Report, Mt Monger Tenement Area, Simon Coxhell January 1995 - WAMEX A number 45072.

Figure 4: Map of Fingals Fortune with conceptual targets identified to date shown in yellow. Collars with max Au downhole are included.

Fingals Regional Opportunities (M26/357, M26/148, M26/248 and M26/364) 100%

Historic drilling shows numerous prospective areas following similar structural trends to Fingals Fortune and the Sibu/Baguss trend. To the north-west of Fingals Fortune is an area of 500m of anomalous gold in drilling that requires following up drilling. The area south of Fingals Fortune contains numerous historic shafts, including Sudden Jerk, None Such and Black Cat, which were predominantly mined prior to WW1 and combined have produced >1,000 oz at >50 g/t Au with minimal follow up drilling.

These areas contain a number of walk up targets which will be drilled in the December 2020 quarter.

Rowe's Find (M28/0370 and M28/0164) 100%

Rowe's Find represents an excellent opportunity to both grow the current Resource and to conduct drilling on an underexplored greenstone belt. Rowe's Find contains numerous historical workings where previous drilling intersected thick, high-grade mineralisation with better results within the Resources including:

- 10m @ 10.52 g/t Au from 41m (RFRC16);
- 14m @ 2.45 g/t Au from 50m (RFRC33); and

Black C

Synd icate

- 5m @ 9.45 g/t Au from 29m (RO0005).

Drilling that falls outside of the current Resources (Figure 7) includes:

- 15m @ 7.44 g/t Au from 41m (IRFRC004);
- 4m @ 6.69 g/t Au from 95m (IRFRC001);
- 4m @ 5.63 g/t Au from 22m (RFRC27); and
- 6m @ 45.67 g/t Au from 6m (RFRC11);
 - o incl 2m @ 135.00 g/t Au from 8m.

Infill and extensional drilling are expected to commence in late September 2020 and continue into the December 2020 quarter.

Figure 5: Rowe's Find Resources highlighting better intercepts outside of the current Resources.

Recent and Planned Activities

Black Cat continues to be extremely productive with upcoming activities to include:

- July 2020: continue RC drilling at Bulong;
- July 2020: commence RC drilling at Fingals;
- July 2020: release 30 June 2020 quarterly activities statement;
- August 2020: 30 June 2020 JMEI tax credit statements to be issued;
- August 2020: Myhree diamond drilling results;
- August 2020: Bulong RC drilling results;
- August 2020: initial results from ongoing RC drilling at Fingals;
- August 2020: Extraordinary General Meeting;
- September 2020: RIU Resurgence Conference, Perth;
- September 2020: audited financial statements for year ended 30 June 2020;
- September 2020: additional Bulong metallurgical testwork results;
- September 2020: Myhree feasibility study;
- September 2020: commence RC drilling at Rowe's Find;
- September 2020: announce drill program for December 2020 quarter;
- October 2020: commence rolling Resources growth updates;
- October 2020: Diggers and Dealers Mining Forum, Kalgoorlie;
- October/November 2020: Rowe's Find RC drilling results;
- November 2020: Noosa Mining Conference, Noosa; and
- November 2020: Annual General Meeting, Perth.

For further information, please contact:

Gareth Solly Managing Director

+61 458 007 713 admin@blackcatsyndicate.com.au

This announcement has been approved for release by the Board of Black Cat Syndicate Limited.

COMPETENT PERSON'S STATEMENT

The information in this announcement that relates to geology and exploration results and planning was compiled by Mr Edward Summerhayes, who is a Member of the AusIMM and an employee and option holder of the Company. Mr Summerhayes has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Summerhayes consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

Black Cat controls 491km² of highly prospective tenements to the east of the world class mining centre of Kalgoorlie, WA. The three main project areas include:

- Bulong Gold Project ("Bulong"), including Yarri East, comprises ~350km² of land located 25-50km east of Kalgoorlie. The combined leases capture in excess of 45km of prospective stratigraphic and structural targets with minimal modern exploration. Advanced deposits undergoing mining studies along with early stage exploration opportunities exist throughout the Project;
- Fingals Gold Project ("Fingals") comprises ~100km² of land located ~30km south east of Bulong. This area contains multiple recently mined Resources and extensive areas of historic mining and limited modern exploration; and
- Rowe's Find Gold Project ("Rowe's Find") comprises ~41km² of land located ~100km east of Bulong. This project contains JORC 2004 Resources and drill ready targets on an overlooked greenstone belt.

Black Cat has combined JORC 2012 Mineral Resources ("Resources") of 8.7Mt @ 2.6 g/t Au for 711,000 oz.

Existing infrastructure proximal to Bulong, Fingals and Rowe's Find presents significant opportunities for mining operations.

Regional map of Kalgoorlie showing the location of the Bulong, Fingals and Rowe's Find Gold Projects as well as nearby infrastructure.

Black CI

Synd icate

JORC 2012 RESOURCE TABLE

The current in-situ, drill-defined and developed Resources for Bulong, Fingals and Rowe's Find are listed below.

	Measured Mineral Resource		Indicated Mineral Resource			Inferred Mineral Resource			Total Mineral Resource			
Deposit	Tonnes ('000s)	Grade (g/t Au)	Metal (000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)
BULONG												
Queen Margaret OP	-	-	-	36	2.2	3	154	1.7	9	190	1.8	12
Queen Margaret UG	-	-	-	-	-	-	72	2.4	6	72	2.4	6
Melbourne United OP	-	-	-	-	-	-	67	2.8	6	67	2.8	6
Melbourne United UG	-	-	-	-	-	-	29	3.0	3	29	3.0	3
Boundary OP	-	-	-	124	2.2	9	351	1.9	21	475	2.0	30
Boundary UG	-	-	-	-	-	-	150	2.3	11	150	2.3	11
Trump OP	-	-	-	57	2.5	5	390	1.9	24	447	2.0	29
Trump UG	-	-	-	-	-	-	149	2.7	13	149	2.7	13
Myhree OP	-	-	-	580	3.6	67	572	3.1	58	1,152	3.4	125
Myhree UG	-	-	-	-	-	-	275	3.4	30	275	3.4	30
Anomaly 38 OP	-	-	-	-	-	-	295	1.5	14	295	1.5	14
Anomaly 38 UG	-	-	-	-	-	-	13	11.7	5	13	11.7	5
Strathfield OP	-	-	-	-	-	-	171	1.7	9	171	1.7	9
Strathfield UG	-	-	-	-	-	-	13	3.0	1	13	3.0	1
Sub Total	-	-	-	797	3.3	84	2,701	2.4	210	3,498	2.6	294
FINGALS					•							•
Majestic	-	-	-	1,673	2.6	142	790	2.3	58	2,463	2.5	200
Imperial	-	-	-	504	2.7	44	216	2.0	14	720	2.5	58
Fingals Fortune OP	-	-	-	-	-	-	1,136	2.3	85	1,136	2.3	85
Fingals Fortune UG	-	-	-	-	-	-	38	2.8	3	38	2.8	3
Wombola Dam	13	3.2	1	164	2.6	14	120	3.0	12	297	2.8	27
Hammer and Tap OP	-	-	-	-	-	-	350	2.4	27	350	2.4	27
Sub Total	13	2.4	1	2,341	2.7	200	2,650	2.3	199	5,004	2.5	400
ROWE'S FIND												
Rowe's Find	-	-	-	-	-	-	148	3.5	17	148	3.5	17
Sub Total	-	-	-	-	-	-	148	3.5	17	148	3.5	17
TOTAL MINERAL RESOURCE	13	3.2	1	3,138	2.8	284	5,499	2.4	426	8,650	2.6	711
The preceding statements of Mineral Edition'. All tonnages reported are dry	Resources of metric tonn	conforms to es. Minor di	the 'Australas	ian Code fo	r Reporting ue to roundi	of Exploration	Results Mir	neral Resou	rces and Ore	Reserves (J	ORC Code)	2012

Notes on Resource table for Bulong, Fingals and Rowe's Find:

1. Data is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding.

2. The Resource estimates are produced in accordance with the 2012 Edition of the Australian Code for Reporting of Mineral Resources and Ore Reserves (the "2012 JORC Code").

- 3. All tonnages are reported in dry metric tonnes.
- 4. Resources have been reported as both open pit and underground with varying cut-offs based off a number of factors discussed in the corresponding Table 1 which can be found with the original ASX announcements for each Resource.
- 5. The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Resources are:
 - a. Queen Margaret Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong";
 - b. Melbourne United Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong";
 - c. Boundary Black Cat ASX announcement on 23 September 2019 "Strong Resource Upgrades at Satellites to Myhree";
 - d. Trump Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz";
 - e. Myhree Black Cat ASX announcement on 18 February 2020 "Myhree Resource Increases to 155,000 oz @ 3.4 g/t Au";
 - f. Anomaly 38 Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz";
 - g. Strathfield Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz";
 - h. Majestic Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources Strategic Transaction with Silver Lake";
 - i. Imperial Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources Strategic Transaction with Silver Lake";
 - j. Fingals Fortune Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources";
 - k. Wombola Dam Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources Strategic Transaction with Silver Lake";
 - I. Hammer and Tap Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources"; and
 - m. Rowe's Find Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources".
- 6. 2004 JORC Resources at the Fingals Gold Project have been excluded from the table to comply with ASX reporting criteria. Please see ASX announcement dated 28 May 2020 for further information. Black Cat will undertake work to convert all 2004 JORC Resources to 2012 JORC Resources in due course.

Black C

Synd icate

Appendix A: Representative Sample of 20% of Historic Drilling at the Fingals Gold Project

Fingals Gold Project drill collars (white) overlaid with the reported holes (red).

		MGA	MGA				From	То	Interval	Au Grade
	Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
	11NMRC405	393962	6570004.4	384.3	-60	76				NSI
	11NMRC409	393867.4	6570126.4	386.3	-60	76				NSI
	11NMRC414	393730.6	6570263.4	384.5	-60	76				NSI
	11NMRC418	393803.5	6570294.6	383.8	-60	76				NSI
	11NMRC424	393722	6570370.2	383.8	-60	76				NSI
	11NMRC429	393811.9	6570409.7	382.5	-60	76				NSI
	11NMRC434	393681	6570463.1	383.7	-60	76				NSI
	11NMRC435	393700.4	6570471.1	383.4	-60	76				NSI
	11NMRC439	393578.6	6570554.3	384.9	-60	76				NSI
	11NMRC442	393632.2	6570579.5	384.7	-60	76				NSI
	11NMRC449	393571.9	6570743.1	385.3	-60	76				NSI
	11NMRC451	393613.5	6570745.5	384.1	-60	76				NSI
_	11NMRC462	393631.7	6570905.1	382.5	-60	76				NSI
	97NMRC051	394448	6570759	371.6	-90	0				NSI
	97NMRC054	393839	6570756	380.3	-90	0				NSI
							11	12	1	6
	GRC24	395986	6572457	394.1	-61	48.7	14	15	1	1.65
							56	58	2	3.18
_	GRC32	395726	6575121	377.5	-66	265.7	45	46	1	2.35

Fingals Fortune – 20% Representative Sample of Historic Drill Holes

	MGA	MGA				From	Το	Interval	Au Grade
	Foot	North	DI	Din	Aripouth	(m)	(m)	(m)	
NR50004	206012.9	R0101	202.2	EDIP 60	51.2	(111)	(11)	(11)	
NB50004	396013.8	6572504.8	393.3	-60	51.3				NSI
NB50007	396020.2	6572511.8	393.3	-00	51.3	2	3	1	1.59
NB50010	396018.2	6572492.9	393.3	-00	51.3	2	5	ļ	4.30 NSI
NB50015	396022.4	6572480.5	394.3	-60	51.3				NSI
NB50020	396038.5	6572493	394.6	-60	51.3	2	3	1	2.13
NB50022	396030	6572471.1	395	-60	51.3		-		NSI
NB50023	396032.9	6572473.6	395	-60	51.3				NSI
NB50031	396037.2	6572462.1	395.7	-60	51.3	17	20	3	1.46
NB50039	396062.7	6572481.6	396.6	-60	51.3	8	9	1	1.45
NB50040	396065.9	6572483.6	396.8	-60	51.3				NSI
NB50041	396079.5	6572557	394.2	-60	51.3				NSI
NB50042	396082.2	6572559.1	394.2	-60	51.3				NSI
						3	4	1	1.12
NB50072	396108.3	6572533.5	396.4	-60	51.3	7	8	1	1.87
						13	14	1	1.73
NB50075	396117.9	6572541	396.2	-60	51.3	1	5	4	6.17
						6	8	2	2.48
NB50079	396112.7	6572521.8	397.2	-60	51.3	19	20	1	3.69
						29	30	1	1.27
NB50081	396119	6572526.4	397.1	-60	51.3	9	10	1	1.08
						27	28	1	1.16
						14	16	2	2.15
NDE0000	200110.0	6570540	200	60	51.0	10	19	1	1.14
NB20069	390110.8	0572510	398	-00	51.3	24	20	1	2.12
						20	23	1	5.63
						32 Q	11	2	6.2
NB50091	396123 3	6572514 9	397.8	-60	51 3	17	19	2	2.97
NBOODOT	000120.0	0072014.0	001.0	00	01.0	23	24	1	1.01
						10	12	2	2.59
NB50100	396127.8	6572503.1	398.7	-60	51.3	15	20	-	NSI
NB50116	396041.6	6572456.8	396.2	-60	51.3	-	-		NSI
NB50123	396064.3	6572473.1	397.3	-60	51.3				NSI
NBRC015	396119.9	6572493.1	399.4	-60	51.7	29	34	5	1.44
NBRC029	396009.4	6572502.7	393.3	-60	51.7	10	13	3	7.95
NRRC033	306045 4	6572460.8	305.0	60	51.7	7	8	1	1.02
NBRG033	390045.4	0372409.8	395.9	-00	51.7	17	20		NSI
NBRC054	396038.6	6572460.8	395.8	-59.5	52.1				NSI
						1	3	2	2.06
						5	6	1	2.96
NBRC059	396095.6	6572543.1	395.5	-57.3	45.9	13	16	3	1.64
						18	19	1	1.2
						27	28	1	1.67
NBRC063	396023.5	6572485.3	394.2	-60.5	46	04	00	4	NSI
						21	22	1	2.69
NBRC069	396078.7	6572554	394.3	-60.7	46.3	<u>∠5</u> 29	20	1	1.11
						28	29	1	10.4
NBRC071	396048	6572529 5	393 7	-57.8	49.1	94	50	-	NSI
NBRC081	396068 7	6572578 5	393	-57.0	49.1				NSI
NBRC085	396008.1	6572528.2	392.6	-56.9	48.7				NSI
NBRC086	395991.4	6572516	392.6	-59	51.8	16	17	1	1.45
	0000	0.576				35	36	1	2.01
NBRCD087	396057.4	6572515.8	394.7	-60	44.7	46	47	1	3.05
RLRC002	395342.5	6574282.9	385.9	-60	269.7				NSI
RRP5	395398.6	6574264.6	384.9	-60	269.7				NSI
SB10	396035.9	6574548.6	386.9	-90	269.7	13	14	1	1.16
SB15	396076.5	6574553.1	386.7	-90	269.7				NSI
SR26	306069 3	657/570 7	386.2	_QΩ	260.7	21	23	2	3.99
0020	390000.3	0314310.1	JUU.Z	-90	209.1	27	28	1	1.01
SB34	396037.6	6574589 3	386 1	-90	269.7	7	13	6	2.62
0004	330037.0	001+009.0	500.1	-30	203.1	15	17	2	4.42

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
SB39	396077.2	6574589.7	385.6	-90	269.7	()	()		NSI
						24	25	1	1.5
SB41	396000.3	6574607.3	385.8	-90	269.7	27	28	1	1.31
SB50	396037.8	6574630.3	385.3	-90	269.7		-		NSI
SB57	396047.9	6574648.3	385.9	-90	269.7	25	26	1	1.08
SB59	395974.1	6574668.7	385.8	-90	269.7				NSI
SB6	396072.9	6574530.2	387.7	-90	269.7				NSI
SB60	395989	6574671.4	386.2	-90	269.7				NSI
0.540	000007.0	0.5.7.4000.0			000 7	12	14	2	2.55
SB63	396037.6	6574669.6	386.3	-90	269.7	36	37	1	4.69
						3	4	1	2.98
						30	31	1	1.71
SB8	396020.3	6574548.3	386.8	-90	269.7	39	40	1	1.91
						43	47	4	1.91
SB87	396030.4	6574537.6	387.1	-90	359.7				NSI
0.504	000004.5	0574550 4			050 7	11	12	1	1.08
SB91	396031.5	6574559.1	386.7	-90	359.7	23	24	1	6.54
						13	20	7	18.8
SBD1	396042.2	6574568.6	386.6	-90	359.7	22	24	2	1.81
SBP20	396060.7	6574770.1	384	-60	269.7				NSI
						28	29	1	1.61
SBP23	395894.7	6574867.9	382.6	-60	269.7	40	42	2	1.33
SBP26	396060.3	6574868.8	379.9	-60	269.7	24	28	4	1.35
BD3	395825	6573969.5	391.6	-60	269.7				NSI
BD6	395675.3	6574017	390.8	-60	269.7	32	34	2	2.46
BP109	395727.1	6573817.2	395.8	-60	269.7	28	31	3	3.46
BP12	395709.5	6574067.2	387.4	-60	269.7	60	65	5	3.11
PD15	205700 6	6572057.6	202.2	60	260.7	49	50	1	4.19
BEID	393709.0	0575957.0	39Z.Z	-00	209.7	52	55	3	1.33
BP150	395629	6574191.8	384.3	-60	269.7				NSI
BP151	395649.1	6574190.2	384.5	-60	269.7	20	22	2	4.57
BP154	395646.6	6574114.1	386	-60	269.7	23	24	1	3.84
						0	2	2	2.17
BP155	395635.4	6574040.9	388.8	-60	269.7	8	19	11	7.53
						23	24	1	1.42
BP158	395661.2	6573941.7	393.3	-60	269.7				NSI
BP161	395716.5	6573892	394.7	-60	269.7	22	27	5	2.11
BP196	395557	6574341	384	-60	269.7	5	6	1	1.02
BP2	395583.3	6574366.5	383.7	-60	269.7				NSI
BP206	395708.4	6574193.5	385.4	-60	269.7	40	41	1	1.05
BP211	395624.8	6574091.4	386.6	-60	269.7	7	12	5	2.22
BP216	395644.7	6574041.3	388.9	-60	269.7	15	22	7	6.09
BP218	395687.7	6574040.6	389	-60	269.7	45	47	2	11.55
BP226	395756	6573893	394.5	-60	269.7	58	59	1	1.34
BP240	395632.9	6574288.2	383.2	-60	269.7	43	46	3	1.36
BP242	395715.2	6574042.2	388.8	-60	269.7	62	63	1	1.82
						66	68	2	1.33
BP243	395645.5	6573968	391.5	-60	269.7	0	2	2	1.65
						6	10	4	2.42
BP25	395700.2	6573567.3	393.8	-60	269.7				NSI
BP29	395761.7	6573467.4	392.9	-60	269.7	18	21		NSI
-						33	34	1	7.1
						27	30	3	2.23
BP33	395819.6	6573367.8	392.3	-60	269.7	45	46	1	1.56
	005707.0	0570007.7			000 7	76	79	3	1.01
BP34	395787.3	6573267.7	393	-60	269.7	12	4.		NSI
554-	0050/	0530055 -	000	~~		40	41	1	1.93
BP35	395817.7	65/3267.5	393.1	-60	269.7	46	48	2	1.76
004	205570.0	0574000.4	202.4	00	200 7	53	54	1	2.33
BP4	395579.3	05/4266.1	383.1	-60	269.7	F.0	50	0	INSI 2.1
BP52	395693.2	05/4116.2	386.1	-60	269.7	50	52	2	3.1
BP54	395661.6	65/4017.8	390.5	-60	269.7	25	27	2	1.99
BP55	395701.3	6574019.8	389.2	-60	269.7	49	53	4	1.3

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
BP62	395756.4	6573817.4	394.8	-60	269.7	48	49	1	1.36
						9	12	3	1.59
BP69	395750	6573467 6	393	-60	269 7	15	18	3	36.1
DI 00	000100	0010401.0	000	00	200.1	21	24	3	1.97
						33	36	3	1.61
BP70	395780	6573467.8	392.6	-60	269.7	27	30	3	2.15
BP86	395609.8	657/310/	383.1	-60	269.7	20	42	0	3.52
B1 00	333003.0	0074010.4	303.1	-00	203.7	45	48	3	1.42
BP9	395737.7	6574166.6	386.9	-60	269.7	71	79	8	2.14
BP91	395625.6	6574216.5	383.9	-60	269.7				NSI
BP94	395714	6574167	385.9	-60	269.7	62	66	4	1.72
ELRC13	394114.5	6574179.2	383.6	-60	89.7	53	54	1	1.98
ELRC15	394104.1	6574229.1	383.5	-60	89.7	36	37	1	2.96
						54	55	1	2.03
						78	53 70	2	10.73
FIRC003	394641	6573101.2	394	-60	48.8	82	83	1	1.22
						89	91	2	1.97
						95	99	4	6.95
FIRC005	394813.1	6573200	395.2	-60	48.8	46	47	1	2.33
FIRC014	394739	6573626.8	393.7	-60.1	88.7				NSI
FIRC015	394785.7	6573632.5	395.6	-59.8	90.4				NSI
FIRC017	394717.9	6573589.3	394.1	-60.7	91.6				NSI
FIRC018	394759.9	6573588.9	394.5	-60.9	89.8	92	95	3	3.39
FIRC021	394718.9	6573546.6	395	-59.0	90.3	19	00	1	NSI
FIRC026	394779	6573531.1	394.9	-60	89.7	61	64	3	1.36
FIRC028	394846.4	6573526.3	395	-60.8	87.9	61	63	2	2.75
FIRC039	394808.3	6573383.2	394.8	-60.2	93	22	27	5	1.77
FIRC041	394880.4	6573381.3	396.7	-60.9	90.7	10	12	2	3.68
FIRC043	394861.2	6573360.1	395.8	-59.7	89.5				NSI
FIRC045	394891.1	6573308.4	396.4	-58.3	91.9				NSI
FIRC047	394963.5	6573261.7	396.9	-59	96.4	71	70	1	NSI 9.7
EIRCD003	394549 9	6573257 9	390	-60	90.8	88.1	93	4 9	2.85
TIRODOOS	004040.0	0070201.0	550	-00	30.0	95.7	97	1.3	1.24
GRC14	394937.9	6571907.4	383.7	-61.5	49.6	36	42	6	3.07
00045	204042	6574904 4	202.6	C1 E	46.6	39	40	1	1.14
GRU15	394942	037 1894.4	363.0	-01.5	40.0	45	47	2	3.43
GRC26	394280	6578060	385.6	-60	269.7				NSI
GRC29	394700	6575920	388.8	-61	264.7				NSI
GRC40	394162.2	6573957.4	388.9	-60	83.6	CE.	66	4	NSI
GRC42	394146	6574057	385.2	-58	84.7	68	70	2	3.05
						56	58	2	1.21
GRC45	394086	6574207	385.1	-58.8	92.7	70	71	1	1.8
						82	84	2	8.26
						35	36	1	1.12
ICRC5005	394576.7	6573248.4	391.1	-60.4	89.3	69	70	1	1.82
						75	80	5	4.36
MMP1	394687.2	6573209.8	393.1	-60	89.7	25	31	6	1.18
						1	70	10	3.90
						15	17	2	2.43
1012100	004077.0	0570755 5	004.0	66	00 7	19	20	1	3.3
MMP102	394277.9	6573755.6	391.3	-60	89.7	25	26	1	1.4
						29	30	1	7
						49	50	1	2.35
MMP103	394547	6573857.8	388.5	-60	89.7				NSI
MMP104	394507	6573857.4	390.7	-60	89.7				NSI
MMP110	395771 7	6573257 8	309.5 392.8	-00	89.7	1	2	1	1 12
	000111.1	00.0201.0	002.0		50.1		÷	•	

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
MMP119	394316.2	6573955.9	389.3	-60	89.7				NSI
MMP121	394236.3	6573955.2	388.8	-60	89.7				NSI
MMP13	394384.4	6573507.4	391.2	-90	359.7	28	29	1	3.76
MMP140	394392.2	6574456.4	381.6	-60	89.7				NSI
MMP141	394352.2	6574456.1	381.6	-60	89.7				NSI
MMP146	394152.2	6574454.5	383.2	-60	89.7				NSI
MMP148	394072.2	6574453.9	382.5	-60	89.7				NSI
MMP154	394365.4	6574056.3	388.1	-60	89.7				NSI
MMP160	394573.8	6574257.9	385.8	-60	89.7	41	42	1	1.25
MMP161	394533.8	6574257.6	385	-60	89.7				NSI
MMP167	394183.8	6574254.8	384.6	-60	89.7				NSI
MMP169	394103.8	6574254.1	383.3	-60	89.7	38	45	7	2.14
MMP180	394233	6574355.2	386.2	-60	89.7				NSI
MMP186	393993.1	6574353.2	384	-60	89.7				NSI
MMP189	393873.1	6574352.3	386	-60	89.7				NSI
MMP190	393833.1	6574351.9	385.2	-60	89.7				NSI
MMP196	394712.9	6574359.1	385.1	-60	89.7				NSI
MMP20	394105.5	6574054.2	385.4	-59	89.7				NSI
MMP21	394156.3	6573954.6	388.8	-59	89.7				NSI
MMP216	394571.4	6573504.5	392.2	-60	89.7				NSI
MMP220	394482.3	6573207.3	385.6	-60	89.7	54	55	1	2.53
MMP221	394442.3	6573207	379.4	-60	89.7				NSI
MMP228	395731.6	6573267.4	393.1	-60	89.7				NSI
MMP238	394042.4	6573203.8	399	-60	89.7				NSI
MMP244	395278.5	6573663.7	390.3	-60	89.7	17	18	1	9.14
MMP248	394541.5	6573356.9	392.5	-60	89.7	14	19	5	3.14
						34	35	1	11.2
MMD054	204624.0	657000 F	202.4	60	00.7	37	38	1	1.34
WIWP251	394031.0	0573208.5	393.4	-60	69.7	50	51	1	1.15
						65	68	3	3.01
MMD250	304662.3	6573250 /	303.3	60	80.7	22	24	2	2.18
WIWF 239	394002.3	0575259.4	J9J.Z	-00	09.7	39	40	1	1.78
MMP261	394902.6	6573260.9	395.7	-60	89.7				NSI
MMP279	394541	6573382.1	392.6	-60	89.7				NSI
						41	42	1	4.62
MMP284	394432.8	6573407.3	384.1	-60	89.7	69	70	1	1.5
						73	76	3	2.52
MMP288	394682.8	6573410.5	394 1	-60	89 7	60	61	1	1.1
111111 200	004002.0	0010410.0	004.1	00	00.1	63	64	1	1.93
MMP29	394740.8	6573459.4	396	-59	89.7	41	44	3	2.06
MMP293	394718.9	6573433.7	395.7	-60	89.7	52	53	1	1.54
MMP299	394718.8	6573459.4	395.7	-60	89.7	47	51	4	1.35
MMP304	394933	6573199.1	395.1	-60	89.7				NSI
						34	43	9	13.73
						53	55	2	34.9
MMP309	394641.4	6573184	393.3	-60	89.7	60	61	1	11.05
						67	69	2	4.07
						73	79	6	12
						92	98	6	1.48
MMP311	394884.7	6573213.5	394.4	-60	89.7	70	77	7	1.7
MMP314	394706.7	6573234.4	393.3	-60	89.7	9	11	2	2.62
MMP315	394670	6573233.4	393.1	-60	89.7				NSI
MARA	204504.0	0570050 0	200 7	<u> </u>	00.7	61	63	2	3.04
MMP322	394561.3	05/3258.2	390.7	-60	89.7	<u>81</u>	82	1	2.44
MARGOO	204070.0	6570000 7	205 7	00	00.7	92	95	3	3./1
MMP323	394878.2	05/3286.7	395.7	-60	89.7	40	40	0	NSI
MMP326	394621.1	6573283.5	392.9	-60	89.7	46	49	3	2.07
						54	55	T A A	3.98
MMP348	394466.6	6573434.5	387.5	-60	89.7	19	33	14 2	4.04
MMD255	304640.2	6572006.0	303.5	60	90.7	04	00	2	14.1 NCI
MMD261	304040.2	6572260	30F 9	-00	09./ 90.7	25	20	2	2 04
MMP36/	30/1262	6573235 /	30/ 8	-00	80.7	20	20 35	J 1	2.01
11111 004	004002	0010200.4	004.0	00	00.1	UT	00		2.00

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						59	62	3	1.32
MMP360	304601.6	6573258 6	302.4	60	80.7	32	33	1	1.66
WIWF 309	394001.0	0373236.0	392.4	-00	09.7	42	43	1	7.8
						33	35	2	2.1
						42	43	1	1.04
MMP371	394587.9	6573284.3	392.6	-60	89.7	56	57	1	1.4
						62	64	2	2.46
						21	70	2	6.4
						38	39	1	2.6
MMP372	394505.3	6573330.7	392	-60	89.7	67	68	1	5.3
						71	72	1	1.38
MMP376	394508.6	6573432.6	392.7	-60	89.7	18	21	3	4.84
MMP382	394470.9	6573483	390.4	-60	89.7	31	33	2	6.19
						44	45	1	1.21
MMP383	394525.5	6573506.8	393	-60	89.7	50	54	4	1.19
						74	76	2	1.65
MMP384	394401.9	6573507.9	390.3	-60	89.7	39	40	1	1.7
	004004.4	0570000 0	004.0		00.7	51	52	1	1.18
MMP393	394801.4	6573493 1	394.8	-60	89.7	35	30	1	2.3
MMP403	394362	6573509.7	392.3	-00-	89.7	52	54	2	1.6
MMP408	394767.8	6573259.6	395.1	-60	89.7	29	30	1	3 13
MMP412	394842	6573235.2	395	-60	89.7	72	73	1	1.57
MMP413	394757	6573232.6	394.7	-60	89.7				NSI
MMD400	204604.6	6570000.0	202.4	60	80.7	49	52	3	3.46
WIWIP423	394604.6	05/3283.3	392.4	-60	89.7	54	55	1	2.07
MMP424	394531 7	6573282 7	390.8	-60	89.7	41	42	1	1.95
	004001.1	0010202.1	000.0	00	00.1	88	90	2	1.77
MMP429	394701	6573359.1	394.2	-60	89.7	29	30	1	5.49
						33	35	2	1.39
MMP430	394491.1	6573357.4	390.1	-60	89.7	37	38	1	5.9
MMP/31	39/715.8	6573384.2	30/ 0	-60	89.7	40	41	I	5.55 NSI
10101 401	004710.0	0070004.2	334.3	-00	03.7	9	10	1	3.35
MMP435	394500.6	6573407.5	391.4	-60	89.7	16	17	1	1.72
						45	46	1	5.6
						27	28	1	1.82
MMP436	394470.7	6573407.2	387.8	-60	89.7	34	36	2	2.91
						53	57	4	41.21
MMP443	394470.2	6573458.7	389.4	-60	89.7	34	36	2	10.28
MMP455	394470.3	6573332.2	387.6	-60	89.7		45	1	1.23
MMD462	204412.2	6572292 6	201.4	60	90.7	57	58	1	1.33
IVIIVIF402	3944 13.Z	0373362.0	301.4	-00	09.7	31	32	3	9.55
MMP463	394834.2	6573460.6	394.6	-60	89.7	34	35	1	1.05
MMP467	394516.8	6573307.7	392.3	-60	89.7				NSI
MMP468	394840.6	6573334.9	395.2	-60	89.7	21	22	1	1.28
						72	73	1	2.3
MMP469	394390.3	6573383.2	380.9	-60	89.7	75	77	2	2.92
						79	82	3	2.43
MMP478	394452.8	6573757	391.9	-60	89.7	43	44	1	1.18
MMP51	394782.1	6573411.8	395.2	-60	89.7	16	17	1	1.45
MMP55	394626.5	6572406.2	392.5	-60	89.7	29	30	1	1.08
MMP50	394340.7	6573/00 P	390.7	-00-	09.7 80.7				NSI
IVIIVIE 33	00-1000.1	0010403.0	550.1	-00	03.1	68	69	1	1.53
MMP61	394440.4	6573357	382.5	-60	89.7	73	74	1	7.32
MMP66	394342.6	6573456.5	390.5	-60	89.7	75	76	1	5.17
MMP70	394621.1	6573458.3	392.3	-60	89.7	0	1	1	1.59
MMP71	394545.1	6573518	393.3	-60	89.7				NSI
MMP78	394639.4	6573558.6	392.7	-60	89.7				NSI
MMP80	394559.4	6573557.9	393.1	-60	89.7				NSI

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
MMP86	394319.5	6573556	392.3	-60	89.7				NSI
MMP87	394678.6	6573658.9	392.2	-60	89.7				NSI
MMP88	394638.6	6573658.5	391.8	-60	89.7				NSI
MMP9	394485.9	6573307.2	389.4	-90	359.7				NSI
MMP95	394358.7	6573656.3	392.8	-60	89.7				NSI
MMP99	394397.8	6573756.6	390.3	-60	89.7				NSI
MMRC9	393687.7	6575631.9	395.5	-60	89.7				NSI
NB50045	396092.5	6572566.8	394.3	-60	51.3				NSI
NB50050	396107.7	6572579.2	394.1	-60	51.3				NSI
NB50058	396102.5	6572559.5	394.9	-60	51.3				NSI
NB50085	396131.3	6572537.1	396.6	-60	51.3	0	2	2	2.13
NB50108	396125.7	6572491.5	399.6	-60	51.3	18	19	1	3.55
						27	28	1	3.75
NBRC003	396193.7	6572385.6	396.9	-60	231.7	44	40	0	NSI
	000107.0	0570540	000.4	00	004 7	11	13	2	3.44
NBRC017	396137.2	6572546	396.1	-60	231.7	21	33	12	2.36
NPRC020	206124.0	6570462.9	402.6	E7 1	ED 9	35	30	1	2.32
NBRC039	396124.9	6572403.8	402.0	-07.1	52.8	00	00	2	1.69
NPRC040	390049.4	6572550.6	205.0	-30.3	60.7 EE 1	00	02	Z	1.00
NBRC040	390130.2	6572538.0	395.9	-30.7	40.2				
NBRC080	396082.9	6572592.6	303.1	-55.6	49.2				NSI
NBRC089	395873 /	6572874.9	305.1	-60	224.7				NSI
NCMRC002	396290	6573585	388.4	-60	269.7	249	250	1	3 47
NCMRC015	393695	6575050	388.3	-60	89.7	2.10	200	•	NSI
PRC113	394936	6571924.5	383.8	-60	44.7				NSI
PRC117	394655.9	6573117	393.9	-60	44.6	27	29	2	5.03
					-	18	19	1	1
PRC121	394973.4	6571885.4	383.3	-60	44.6	21	23	2	2.06
						37	39	2	2.08
	00/700 /	0570004.0				12	13	1	2
PRC126	394703.4	6573061.3	393.4	-60	44.6	15	20	5	1.4
PRC13	394672.3	6572912.2	390.4	-60	44.6				NSI
PRC14	394631.5	6572951.1	391.1	-60	44.6				NSI
PRC19	394763.8	6573158.6	394.3	-60	44.6	38	43	5	3.36
PRC21	394974.1	6572867.4	498	-60	44.6				NSI
PRC25	394974.9	6572788.9	387.5	-60	44.6				NSI
PRC26	395138	6572657 4	386.3	-60	44.6	36	38	2	3.77
	000100	0012001.4	000.0	00	44.0	43	44	1	4.39
PRC38	394669.3	6573082	394	-60	49.6	35	37	2	1.64
PRC39	394701.1	6573036.7	392.9	-60	49.6	21	24		NSI
						28	29	1	8.5
PRC45	394710.3	6572635.3	390.3	-60	269.6	23	26	3	3.42
PRC48	394807.8	6572143.1	386.7	-60	49.6				NSI
PRC52	394610.1	6573134.5	393.6	-60	49.6	23	24	1	1.47
		05704004				29	30	1	2.2
PRC53	394629.8	6573120.1	393.8	-60	49.6				NSI
PRC57	394813.6	65/3135.8	394.4	-60	49.6				NSI
PRC62	394696.5	6572707.8	391.2	-60	259.6				NSI
PRC00	395050.4	0572805.7	367.6	-00	49.0	45	47	2	NSI 2.95
DBC70	205020 F	6570709	207.6	60	24.6	10	20	2	3.65
PRC/U	395020.5	0372796	307.0	-00	54.0	19	50	1	1.01
PRC75	30/058.6	6572854 8	387.0	-60	49.6	49	21	2	2.88
110/0	00-000.0	0072007.0	007.0	50	-3.0	30	31	1	1.97
PRC78	394644	6573132.2	393.8	-60	299.6	33	34	1	1 18
						6	7	1	1.41
PRC91	394979.5	6571891.9	383.1	-60	44.7	14	19	5	6.74
				50		26	27	1	1.63
PRC92	394965.3	6571877.7	383.5	-60	44.7				NSI
RRP1	395273.6	6574263.6	386.6	-60	269.7				NSI
SSRC1	393511.9	6574129.8	388.4	-60	87.6				NSI
YRC3	395314.6	6574250.3	385.9	-60	324.7	25	26	1	2.28

20 | P a g e

Black Cat

Fingals Drilling Program Approved for September 2020 Quarter

Imperial an	d Majest	ic – 20%	Repre	sentativ	/e Samp	le of H	listorio	: Drill I	Holes
	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(q/t)
				•		42	44	2	3.06
						46	47	1	1.46
						57	58	1	1.11
						64	65	1	1.2
14IMRC003	398094.6	6581889	338.7	-61	90	72	73	1	2.37
						77	78	1	1.42
						80	82	2	1.29
						87	88	1	1.14
						108	111	3	1.93
						45	48	3	1
						78	79	1	4.43
14IMRC008	398134.6	6581919.1	338.2	-60.2	90	123	124	1	6.85
						126	129	3	1.19
						153	154	1	2.83
						130	140	1	2.03
14IMRC018D	398152.5	6581520.8	339.8	-61.4	90	187.9	188.9	1	2.03
						233.9	234.9	1	8.86
						39	42	•	NSI
14IMRC028D	398251.6	6581360.9	340.6	-60.8	90	46	47	1	3.53
15IMDD014	398516.5	6581603.9	336.1	-60.5	89.9				NSI
15IMDD027	398599.1	6581603.1	336.5	-60.8	90				NSI
						28	29	1	1.02
						113	114	1	3.88
17M.IRD002	398416 7	6581214 6	3417	-60.5	90	193.54	195.84	2.3	1.51
	000110.1	000121110	•••••	00.0		204.95	206.6	1.65	7.42
						265.66	267.98	2.32	7.41
						282.64	283.64	1	3.4
						142.62	144.03	1.41	4.25
17MJRD005	398425	6581295.8	340.4	-60.6	88.9	201.46	203.03	1.57	6.72
						266.8	259.00	2.02	1.20
						42	43	1	2 11
IIRC0002	398271.3	6581898.1	335.3	-60.3	89.7	92	93	1	22.07
						132	133	1	2.72
IIRC0003	398290.9	6581898.1	335	-59.8	89.7	64	67	3	4.58
						62	63	1	1.39
						82	84	2	1.67
						101	102	1	2.69
IIRC0005	398251.7	6581819.8	335.2	-59.9	89.7	112	113	1	3.64
						128	129	1	1.16
						143	144	1	26.08
-						146	147	1	13.55
IIRC0009	398318.1	6581759.5	334.8	-59.4	89.7	12	131	3	5.83
-						130	/3	1	2.15
						88	89	1	7.25
IIRC0014	398302.4	6581759.5	334.9	-61.3	90.8	94	97	3	5.12
						121	122	1	1.54
						155	159	4	1.56
						45	46	1	1.31
						97	98	1	2.06
URC0015	308280	6581758 8	335	-61	88.0	106	113	7	40.99
	000200	0001100.0	000	51	50.5	147	148	1	1.13
						160	161	1	1.15
						169	170	1	4.04
	000050 0	0504704.6	005.0	00 5	00.0	37	38	1	1.78
IIRC0016	398358.6	0581721.2	335.2	-60.5	90.8	66	67	1	1.46
						91	92	1	1.34
	308205	6581710 7	335 1	_61 2	د ۵۵	103	104	2	1 21
111100022	000200	0001119.1	555.1	-01.0	30.5	202	205	3	8.41
						202	200	5	0.71

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
IIRC0024	398261.5	6581718.8	335.4	-60.7	90.8	163	166		NSI
IMD004	398620.2	6581298.1	338.3	-61.2	278.8				NSI
						34	35	1	3.81
						107	108	1	1.87
						112	113	1	10.07
IMD021	398499.3	6581397.8	338.1	-59.5	92.4	157	158	1	3.69
						1/4	1/5	1	1.32
						178	180	2	2.62
						201	202	11	1.95
						00	03.0	1.1	3.90
						92 05 06	100.32	5.26	10.63
						106	100.02	1	4 65
IMD035	398565.1	6581184.3	339.9	-54	359.9	114.5	115 54	1 04	2.67
						137	139.75	2.75	1.32
						141.2	142.95	1.75	2.17
						151.42	153.5	2.08	3.52
						70	74	4	5.59
						83	85	2	2.61
						90	91	1	1.08
IMD039	398657.5	6581441.4	339.2	-55.4	273.4	94	98	4	4.53
						111.83	136.45	24.62	4.05
						151.4	152.45	1.05	1.28
						45.5	53.6	8.1	6.1
	308336.3	6591910.0	334.9	60.0	02.1	56.5	60.4	3.9	3.82
1000004	390320.3	0301019.9	554.0	-00.9	92.1	89	90	1	7.22
						128	129	1	1.91
						52	53	1	1.03
						219	220	1	1.26
						223.6	224.6	1	2.02
IMDD5005	398367.7	6581537.6	337.3	-60.3	92.5	230.8	233.53	2.73	1.04
						262.45	265.2	2.75	1.96
						281.2	282.3	1.1	1.33
	000444.0	0504070.4	005.0	04 7	01.0	312.07	314	1.93	2.27
IMDD5022	398444.2	6581679.4	335.9	-61.7	91.9	29.5	30.5	1	1.66
INDDE025	200426.2	0504750	225 F	c0 7	070.0	125.8	126.8	1	15.2
IMDD5025	398420.3	0001700	335.5	-00.7	212.2	164.2	143	1.1	19.91
	308522 /	6591990 7	335	60.0	00	104.2	100.2	2	NSI
IMBC001	390022.4	6581159 /	338.6	-60	269.7	103	10/	1	13
IMRC002	399078.4	6581159.3	337.3	-00	269.7	44	45	1	2.16
IMRC003	399252.5	6581159	337.3	-60	269.7		40		NSI
IMRC004	399015	6581407.9	337.5	-60	269.7				NSI
IMRC005	399051.5	6581406.8	336.4	-60	269.7				NSI
IMRC013	399078.4	6581159.3	337.3	-90	359.7	36	39	3	2.35
						152	166	14	5.27
IMRC016D	398471.5	6581260.3	340.7	-61	94.1	245	248	3	1.83
						25	30	5	4.13
						33	36	3	2.68
						38	41	3	1.8
						43	44	1	1.04
IMRC017D	398588.3	6581298.5	338	-60.8	89.2	51	52	1	2
						102	103	1	23.72
						141	142	1	1.07
						234	235	1	1.19
						273	274	1	1.22
						68	69	1	4.53
						78	83	5	10.67
				-		88	95	7	3.96
IMRC027	398530.8	6581258.6	340	-60.7	92.8	99	100	1	7.07
						103	105	2	2.37
						107	114	7	4.05
						120	127	1	6.46

						E	Te	Interval	Au Crada
	MGA	MGA				From	10	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						142	143	1	1.12
INDCO20	200200 0	0504500.0	220.7	<u>co</u>	00 7	29	30	1	3.89
IMRC030	398300.6	0081002.8	330.7	-60	69.7	 	35	1	2.23
IMRC044	307050 0	6581050 6	3/11/1	-60	80.7	42	40	4	
1111110044	001000.0	0001000.0	041.1	00	00.1	44	46	2	1.91
						66	68	2	4.08
IMRC051	398952.9	6581398.3	337.5	-60	89.7	83	84	1	3.35
						100	101	1	1.19
						188	189	1	2.64
IMRC071	398270.7	6581147.1	341.4	-60	89.7	56	57	1	1.74
						34	35	1	1.32
IMRC082D	399001.9	6580848.2	340.9	-60.6	86.8	208	210	2	1.03
	00000110	0000010.2	010.0	00.0	00.0	218	219	1	1.09
						225	226	1	1.52
						50	51	1	1.34
IMRC086	398570.2	6581339.8	338.5	-60.2	92.9	60	69	9	4.72
						73	75	2	5.27
						59	67	1	2.22
						70	71	2	6.12
						86	87	1	3.03
						92	93	1	1.39
IMRC087	398526.7	6581341.8	339	-60	92.7	105	109	4	2.28
						114	121	7	1.15
						138	139	1	8.68
						146	147	1	1.49
						173	174	1	1.21
						31	32	1	1.98
IMRC093	398460.5	6581380	338.6	-60	89.7	169	170	1	2.95
						195	198	3	2.31
						91	92	1	3.48
IMRC097	398669.7	6581387.6	339.5	-60	90.9	108	109	1	1.23
INDOARA	000000	0504400.0	000	00	00.7	111	113	2	1.79
IMRC104	398666	6581460.8	339	-60	89.7	4	7	2	1.40
						4	11	3	1.49
						22	24	2	2.46
IMRC106	398590.4	6581454.4	338.5	-60	90.8	33	36	3	17.42
						54	55	1	3.1
						57	58	1	1.14
						152	153	1	1.68
						28	29	1	1.65
IMRC110	398707.6	6581262	338.2	-60	89.7	88	89	1	1.84
						108	109	1	14.23
IMRC111	398663.9	6581250.3	338.2	-60	89.7	28	29	1	2.39
						138	139	1	1.55
						152	159	7	11.69
IMPC400D	200470	6504044	240 F	60.0	00.0	183	184	1	2.02
IMRG 123D	396472	0581214	340.5	-00.2	92.3	216	192	2	8.75
						210	217	1	2 77
						280	281	1	1.46
IMRC125	399324.4	6582058.5	331.3	-60	89.7	200	201	,	NSI
			-			43	45	2	2.4
						103	106	3	2.56
						123	126	3	1.1
						128	132	4	14.72
IMRC132	399190.5	6581953.1	331.8	-60	90.8	135	136	1	3.77
						141	142	1	1.62
						168	169	1	3.49
						171	172	1	1.03
						174	177	3	1.64

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	Fast	North	RI	Din	Azimuth	(m)	(m)	(m)	
THORE ID	Last	North	IXL.	ыр	Azimuur	64	65	1	(9/1)
						77	78	1	1.37
IMRC134	398072.1	6581854.2	338.7	-60	89.7	107	108	1	1.18
						156	158	2	1.91
						167	168	1	8.73
IMPC140	308021	6591756 2	333.6	60	80.7	52	54	2	8.67
101100140	590921	0301730.2	333.0	-00	09.7	118	119	1	1.48
						55	56	1	2.26
						91	93	2	1.49
IMRC141	399000.4	6581756.5	333.3	-60	89.7	112	113	1	1.67
						121	122	1	2.61
						42	44	2	1 39
IMRC143	399162.2	6581755.5	333.2	-60	89.7	88	89	1	1.33
						76	77	1	7.57
IMRC146	398161	6581696.9	337.1	-60	89.7	79	80	1	1.87
						82	83	1	1.16
IMRC147	398920.9	6581657.5	334.9	-60	90.8				NSI
IMRC148	399101.8	6581657.4	333.5	-60	90.8	59	60	1	2.62
						24	25	1	2.14
						37	39	2	4.4
IMRC157	398395.2	6581405.4	338	-59.8	90.9	43	48	5	1.54
						56	57	1	1.48
						62	63	1	1.7
IMRC159	398254.9	6581400.1	342	-60.2	90.8	37	38	1	1.01
						18	19	1	1.27
IMRC160	398587.1	6581540.3	337.1	-60	89.7	29	30	1	1.04
						71	72	1	1.1
IMRC166	398467.2	6581620.3	336	-60	90.8		72		NSI
						32	33	1	1.17
						61	62	1	3.29
IMRC171	398604.3	6581280.3	338.2	-60	89.7	66	67	1	1.3
						69	70	1	1.21
						97	98	1	8.54
						147.3	148.5	1.2	1.54
						154.5	157.9	3.4	24.02
IMRC175D	398447	6581280.4	339.5	-60.1	88.8	169	172.05	3.05	5.5
						181	182	1	3.3
						240.0	248.2	2.0	7.91
						239.1	91	2.9	5.81
						115	118	3	1.86
						131	134	3	2.14
						139	142	3	4.12
IMRC179	398480.6	6581318.6	339.1	-60	89.7	147	148	1	1.16
						156	159	3	5.9
						171	172	1	2.5
						189	190	1	2.03
						42	43	1	1.99
		05040504				103	105	2	5.76
IMRC181	399229.7	6581959.4	331.7	-60	89.7	145	146	1	11.34
						155	179	1	1.37
IMRC183A	399268 5	6581999 4	331 5	-60	89.7	55	56	1	1.0
IMRC186	399148.9	6581999	333.2	-60	90.8	201	202	. 1	1.52
					20.0	48	49	1	1.73
	000000	0501000 -	001-	~~		115	116	1	1.57
IMRC188	399229.7	6581920.8	331.8	-60	89.7	175	176	1	3.56
						194	196	2	2.68
IMRC203	399081	6581098	337.3	-60	89.7	40	41	1	1.88
IMRC208	399083.6	6581022.6	337.8	-60	89.7	32	33	1	1.09
101 (0200	000000.0	0001022.0	001.0	50	00.1	83	84	1	1.1

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						35	36	1	1.55
IMRC211	398950.3	6581018.9	339.9	-60	89.7	163	164	1	1.15
						46	47	1	1.84
						51	52	1	1.4
						57	58	1	3.23
						63	65	2	5.96
IMRC222	398548.3	6581501.6	338.2	-60.7	92	6/	68	1	1.05
						87	94	7	28.75
						96	103	7	7.4
						107	112	5	4.96
						126	127	1	3.38
						102	103	1	2.9
IMRC223D	398470.5	6581501.2	336.9	-60.2	90.5	161.8	163.8	2	6.87
						186.15	187.17	1.02	2.07
IMRC228D	398610.6	6581200.2	339.5	-60.3	88.2	38	39	1	1.37
						29	30	1	2.06
						18/	185	1	5.05
						189	190	1	38.84
						192	194	2	2.55
IMPOSSO	200422.6	6594000 6	220.2	<u> </u>	00.4	199	200	1	3.35
IMRC229D	398433.6	6581220.6	339.2	-60.3	90.1	218	219	1	1.58
						223	224	1	2.9
						237	238	1	3.65
						253	254	1	8.67
						268	269	1	3.11
						279	280	1 35	1.08
						168.54	169.96	1.33	10.37
						175	176.2	1.2	1.06
						177.37	181.8	4.43	4.68
IMRC230D	398430.5	6581242.3	339.3	-60.7	93.8	192	193.05	1.05	3.11
						221	222.45	1.45	4.82
						232.2	236.5	4.3	14.98
						251.45	252.6	1.15	2.41
						271.3	273	1.7	5.1
						27	28	1	2.56
						85	89	1	2.75
IMRC237D	398359.7	6581360.1	337.8	-60.4	93.6	120.7	121.85	1.15	3.41
						266	268.84	2.84	5.33
						274	275.2	1.2	1.45
						32	39	7	3.73
						63	64	1	1.25
IMRC239D	398451.1	6581360.3	338.6	-61	92.4	80	81	1	1.74
						132.37	135.45	3.08	1
						140	141.2	1.2	1.33
IMRC261D	398485	6581440	337.5	-60.3	92.7	108	109.2	1.2	1.14
						54	55	1	6.03
						66	68	2	10.5
						74	75	1	1.21
						85	86	1	1.17
						96	98	2	1.95
IMRC267	398525	6581480	338.2	-60.6	95	100	102	2	2.53
						106	108	2	2.03
						110	111	1	6.29
						113	114	1	1.96
						136	137	1	2.55
						146	147	1	1.35
IMRC269	398627.2	6581520	336.7	-60	89.7	18	19	. 1	2.03
							-		

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						34	35	1	1.25
						37	39	2	3.91
						41	44	3	7.05
						79	80	1	1.13
						95	96	1	1.76
IMRC276	398499.9	6581321.3	338.7	-60	89.7	130	132	2	1.29
						145	135	1	1.04
						148	156	8	1.23
						106	109	3	5.07
						121	123	2	4.68
IMRC278	398510.6	6581342	338.6	-60.2	98.6	125	127	2	1.3
						129	130	1	1.07
						165	145	9	4 44
IMRC287	399365.6	6582153.4	331.4	-60	90	100	100		NSI
IMRC291	398665.1	6580759.6	341.5	-60	89.7				NSI
IMRC293	398662.8	6580850.8	342.1	-60	89.7				NSI
IMRC328	398374.7	6581584.6	336.5	-60	90.8	32	33	1	2.97
						87	88	1	2.83
IMPO220	200222.4	0504004 7	226.0	60	00	60	61	1	1.16
IMRC330	396332.1	0001021.7	330.2	-00	90	183	18/	1	2.03
IMRC331A	398412.8	6581620.7	336.2	-60.8	92.4	100	104	I	NSI
IMRC331D	398412.8	6581620.7	336.2	-60.8	92.4	57	58	1	2.16
-						45	46	1	1.22
						48	49	1	1.11
						78	81	3	1.08
IMRC336	398538.9	6581240.9	340	-59.8	89.2	84	92	8	2.86
						98	100	2	3.48
						110	103	1	2.36
						118	119	1	1.48
						25	26	1	1.14
						34	37	3	1.43
						44	46	2	2.06
IMRC340	398528.3	6581379.8	339.6	-59.6	90.8	52	53	1	2.15
						92	96	4	4.16
						123	124	1	1.09
						31	32	1	4.11
						42	43	1	1.11
						48	49	1	1.56
						53	54	1	1.1
IMRC341D	398523.6	6581400	339.1	-60.6	91	58	59	1	4.05
						101	102	1	1.04
						117	102	1	2.76
						122	126	4	4.04
						128	132	4	3.82
IMRC344	399212.6	6581596.8	334.1	-60	90.8	28	32	4	1.37
IMRC358	398623	6581319.8	338.3	-59.6	93.5	25	26	1	1.9
						30	31	1	1.5
IMRC363	398590.2	6581440	338.6	-60	89.7	35	36	1	1.32
IMRC367	398675 7	6581481	338.7	-59 7	91.4	42	43	1	NSI
IMRC382	398609.8	6581500.1	337.3	-59.9	91.2	65	66	1	2.69
IMRC383	398660.8	6581499.9	337.8	-60.8	88				NSI
IMRC387	398742.4	6581758.8	334.9	-60	90.8				NSI
IMRC406	398852.8	6580800.6	341.5	-60	90.8				NSI
IMRC409	399029.1	6580802.6	340.8	-60	90.8	41	42	1	1.19
IMPC440	300065 5	6580904 0	330.7	60	00.0	45	46	1	1.49
INIRC410	JAAN9090'0	0000001.2	339.1	-00	90.8	31	38	I	2.83

	MCA	MCA				From	То	Inton (ol	Au Crada
	WGA	WGA				FIOII	10	mervar	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						87	88	1	1.38
						49	50	1	1.07
						52	53	1	1.16
						74	70	1	1.54
						01	12	1	2.44
						119	90	1	1.15
IMRC5008	398094.7	6581859.6	337.3	-60	90	126	119	1	1.0
						134	127	2	2.38
						140	141	1	1 16
						140	161	1	1.13
						167	168	1	1.53
						171	172	1	1.08
						24	28	4	5.31
IMRC5019	398410.7	6581459.1	337.5	-60	90.8	32	33	1	1.49
						26	30	4	1.82
						32	33	1	1.15
IMRC5020	398371.7	6581459.4	337.8	-60.2	91.6	43	45	2	3.62
						48	51	3	4.11
						54	58	4	4.1
IMRC5022	398309.5	6581460	339.6	-59.9	90.5				NSI
IMRC5025	398392.4	6581377.9	338	-60.4	94				NSI
						51	52	1	1
IMPCE022	200140.2	6591700 6	226 1	60 E	00 1	57	58	1	1.95
INIRC5055	390140.2	0361799.0	330.1	-00.5	00.1	63	64	1	1.24
						74	77	3	2.69
IMRC5037D	398321.5	6581738.3	334.9	-60	90.8	121.5	124	2.5	1.17
	00002110	000110010	001.0		00.0	142.9	144	1.1	1
						39	40	1	1.81
						115	116	1	8.48
IMRC5039	398262.2	6581738.1	335.3	-60.8	85.7	125	126	1	1.05
						133	135	2	2.31
						142	143	1	1.09
IMRC5040	398341.2	6581777.9	334.9	-60	90	68	69	1	1.34
						84	85	1	1.23
IMRC5043	398242.2	6581775.5	335.6	-60	90	47	48	1	3.27
						96	99	3	1.99
						89	90	1	1.61
IMRC5050	398244.2	6581880.2	335.5	-61.1	92.2	93	94	1	1.12
						104	109	2	28.03
IMPC5052	309701 /	6591691 1	336.0	60	00	135	137	2	4.21 NSI
IMRC5052	398488 3	6581800.1	335.2	-00	90				NSI
IMRC5057	398462.6	6581920.4	335.7	-00	90.8				NSI
IMRC5060	398697 1	6581930.3	336.1	-60	90				NSI
	000007.1	000.000.0	000.1	50		57	58	1	1.75
						113	116	3	37.6
IMRC5067	398303.9	6581879.5	335.3	-60.9	91.2	118	120	2	14.24
						123	126	3	5.45
IMRC5088	398401.8	6581485.2	337.4	-60.8	90.8	27	31	4	1.66
						35	36	1	2.17
IMRC5116	398389.4	6581700.6	335.5	-60.4	90.3	54	55	1	1.68
						77	78	1	1.06
						90	91	1	1.39
IMPOStoo	200200 5	6501700 0	335 3	60.0	00 0	94	95	1	1.32
IIVING9120	390300.3	0001700.2	333.3	-00.3	00.0	120	121	1	1.27
						136	137	1	1.81
						50	51	1	1.53
IMRC5124	398298.7	6581965.2	335.4	-60.7	87.7	73	78	5	20.59
						80	81	1	1.23
IMRC5126	398319.9	6581959.1	336.3	-60.7	91				NSI
IMRC5131	398138 5	6581962 4	335.8	-60.7	93	50	56	6	1.5
	000100.0	000.00L.4	000.0	50.7	50	67	68	1	1.39

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						128	129	1	4.91
						174	175	1	4.36
						43	44	1	1.33
IN IDOC 405	0004545	0504000 5	000.0	00	00.7	49	50	1	1.15
IMRC5135	398154.5	6581980.5	336.2	-60	89.7	103	62 104	1	2.47
						103	104	1	4 25
IMWE03	398239	6581612	336.2	-90	0	107	100		NSI
						20	22	2	6.57
IEC22	200506.6	6591641 6	222.7	00	250.7	77	78	1	1.27
JFG22	399500.0	0301041.0	332.1	-90	339.7	84	87		NSI
						132	133	1	1.79
						123	124	1	1.13
						126	129	3	1.01
JFC23	399622.6	6581641.6	332.6	-90	359.7	137	138	1	1.44
						186	187	J 1	17
						195	196	1	2.56
JFRC11	399640.7	6581544.2	332	-60	89.7				NSI
JFRC12	399679.3	6581544.5	332.2	-60	89.7	18	20	2	8.2
JFRC14	399617.1	6580915.7	338.4	-60	89.7	44	46	2	1
JFRC5	399610.8	6581642.5	333.3	-60	89.7	20	22	2	1.25
MJCC004	397595.8	6581257.2	342.7	-60	269.7				NSI
MJCC014	397538	6578957.5	358.7	-60	89.7	30	31	1	2.01
MJCC015	397497.5	6578957.5	359.4	-60	89.7	28	29	1	1.26
MJCC024	397777.2	6579057.5	359.6	-60	89.7	73	74	1	1 10
						0	1	1	9.5
						8	9	1	1.21
						20	21	1	1.65
MICCO22	207277.0	6570957 F	252.4	60	90.7	32	33	1	1.42
WIJCC032	391311.9	0579657.5	552.4	-00	09.7	35	36	1	2.09
						41	43	2	2.14
						45	46	1	1.73
						64	65	1	1.46
						20	15	ו ר	4.7
						44	45	1	2.12
MJCC036	397376.9	6579957.5	351.4	-60	89.7	57	58	1	2.04
						68	69	1	1.05
						76	77	1	1.9
						29	30	1	4.9
MJCC037	397377.2	6580057.5	351	-60	89.7	61	65	4	1.15
						74	78	4	1.32
						17	18	1	1.06
MJCC045	397455.7	6579907.5	353.4	-60	89.7	70	80	3	1.69
						97	98	1	1.21
						7	8	1	1.15
NU00040	007447.0	0570007 5	050.4	00	00.7	12	13	1	1.12
MJCC046	397417.8	6579907.5	352.1	-60	89.7	16	17	1	1.92
						84	85	1	1.47
						43	44	1	1.04
MJCC049	397297.8	6579904.5	354.2	-60	89.7	52	53	1	1.26
						93	94	1	2.05
MJCC051	397337.9	6579807.5	353.4	-60	89.7	79	37 80	3 1	2.07
						29	31	2	1.9
						37	38	1	1.59
MJCC052	397377	6579807.5	352.8	-60	89.7	47	48	1	1.1
						60	61	1	1.11
						97	98	1	1.73
MJCC104	397595.8	6581257.2	342.7	-60	89.7	52	54	2	6.8

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	Fast	North	RI	Dip	Azimuth	(m)	(m)	(m)	(a/t)
	Luot			0.15		72	74	2	1.09
MJCC107	397877.7	6580557.5	347.8	-60	89.7				NSI
MJCC117	396916.8	6580957.5	348	-60	89.7				NSI
MJCC120	396957.9	6580757.5	350.3	-60	89.7				NSI
						15	16	1	5.4
	007047.0	0501057	o / o =			24	25	1	10.6
MJCC123	397617.2	6581257	342.5	-60	89.7	28	33	5	3.69
						72	73	1	20
MJCC149	397497.4	6581407.5	342.1	-60	89.7	10	10		NSI
MJCC152	398097.1	6582057.5	335.3	-90	359.7				NSI
MJCC154	398272.1	6582057.5	336.2	-90	359.7	52	54	2	1.8
MJCC157	398498	6582057.5	334.8	-90	359.7				NSI
MJCC162	398338.1	6582257.5	333.4	-90	359.7				NSI
MJCC163	398417.7	6582257.5	334.5	-90	359.7				NSI
MJCC167	397657.2	6579457.5	353.8	-60	89.7				NSI
MJCC182	397217.5	6583357.5	333.2	-90	359.7				NSI
MJCC201	396897.7	6582257 5	339.5	-90	359.7				NSI
MJCC206	397256.8	6582257.5	339	-90	359.7				NSI
MJCC212	397897.9	6583357.5	329.8	-90	359.7				NSI
MJCC219	397687.7	6581307.5	341.3	-90	359.7				NSI
MJCC235	397297.2	6580097.5	351.5	-60	89.7				NSI
						50	51	1	1.7
						59	60	1	1.01
						62	73	11	2.05
NICC007	207227.2	CE00007 E	254.2	60	00.7	/9	80	1	2.86
MJCC237	39/33/.2	C.10006C0	301.3	-60	69.7	89	65	1	13.4
						100	101	1	1.17
						108	109	1	1.04
						111	112	1	2.14
						30	31	1	4.14
						50	51	1	1.14
MJCC242	397367.2	6579747.5	353.4	-60	89.7	62	63	1	3.71
						66	67	1	1.47
MICC264	207017.9	6590057 5	220.0	60	90.7	81	82	1	1.23
MJCC374	398567.2	6582057.5	334.6	-00	269.7	45	46	1	1.28
MJCC392	398537.7	6582957.5	330.3	-90	359.7	40	40		NSI
MJCC394	398538	6582657.5	331	-90	359.7				NSI
MJCC407	398536.8	6580857.5	342.3	-90	359.7				NSI
MJCC410	399137.4	6580857.5	340.3	-90	359.7				NSI
						62	63	1	1.2
MJCD088	397319.8	6580057.5	351.2	-60	89.7	77	79	2	3.15
						89	90	1	5.5
						94	95	1	1.13
						11	13	2	8.89
MJRC422	397646.8	6581277.3	341.9	-60	179.7	17	18	1	4.38
						22	23	1	3.85
						37	38	1	1.63
MN01	397354	6579170	359.3	-60	179.7	24	25	1	1
MN04	397297	6579838	354.7	-60	89.7	23	24	1	1.16
						29	30	1	1.8
MN06	397466	6580800	346.7	-60	89.7				NSI
	307716	6580005	340.7	-00-	09./ 170.7				NSI
111111	337710	0000990	J4J	-00	1/9./	22	23	1	3.8
MN21a	397620	6581362	343	-60	89.7	33	35	2	1.63
MN23a	397598	6581376	343.3	-60	89.7	34	36	2	1.45
MN27a	397668	6581268	341.7	-60	89.7	17	18	1	3.15
MWB3	398179.4	6581318.1	340.7	-90	0.8				NSI

Wombola - 20% Representative Sample of Historic Drill Holes

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						0	1	1	1.48
10MMDD073	387645.5	6569486	394	-60	139.6	51.7	52.9	1.2	5.44
11MMRC002	387566.8	6569925.1	397.8	-62	139.6				NSI
11MMRC005	387604.9	6569878.3	398.2	-62	139.6				NSI
11MMRC009	387655	6569817.2	398.9	-60	139.6				NSI
11MMRC013	387705.1	6569755.2	401.4	-60	139.6				NSI
11MMRC017	387773.3	6569710.5	408.3	-63	139.6				NSI
11MMRC029	387908	6569492.6	393	-62	139.6	43	44	1	5.62
11MMRC030	387920	6569477.3	392.8	-61	139.6	22	23	1	2.25
11MMRC044	388073.2	6569476.2	392.5	-64	139.6				NSI
11MMRC047	388034.8	6569522.9	393.7	-63	139.6				NSI
11MMRC048	388021.7	6569537.9	394.4	-63	139.6	45	40	4	NSI 4.00
11MMRC049	388010	6569552.2	395	-62	139.6	45	46	.1	1.29
11MMRC062	2001122	6560612.7	395.5	-00-	139.0				NSI NSI
11MMPC072	3990113.2	6560735.6	406.4	-04	139.0				NSI
11MMRC072	388000 7	6569754.2	407.3	-55	139.6				NSI
11MMRC074	387984.6	6569767.3	406.6	-60	139.6				NSI
11MMRC081	388084	6569828.5	402	-60	139.6				NSI
11MMRC082	388071.3	6569844.6	401.2	-59	139.6				NSI
11MMRC083	388061.5	6569860.7	401.1	-59	139.6				NSI
11MMRC094	388189.5	6569520.9	393.2	-60	139.6				NSI
11MMRC096	387866.1	6569723	405.9	-58	139.6				NSI
11MMRC100	387960.9	6569796.2	403.5	-57	139.6				NSI
11NMDD003	386715.9	6569332.8	402.1	-55	120				NSI
11NMRC103	386685	6569245.2	400	-55	120				NSI
						4	5	1	1.32
11NMRC107	386645.7	6569337.1	400	-55	120	23	24	1	4.83
						27	28	1	1.3
11NMRC108	386663.1	6569327.1	400	-55	120				NSI
11NMRC112	386660.7	6569363.1	400	-55	120				NSI
11NMRC119	386745	6569349.1	400	-55	120				NSI
						14	15	1	1.45
11NMRC128	386770.4	6569472.8	400	-55	120	22	23	1	1.34
						31	32	1	3.31
11NMPC120	206707 7	6560462.9	400	55	120	35	30	1	1.53
11NMRC129	397122.2	6560440.0	400	-00	120				NSI
11NMRC145	387136.2	6569435.6	400.2	-55	135				NSI
11NMRC147	387162.5	6569405.8	398.5	-55	135				NSI
11NMRC148	387178.6	6569391.9	398.1	-55	135				NSI
11NMRC149	387192.2	6569378.4	397.5	-55	135				NSI
11NMRC160	387248.9	6569404.2	398.3	-55	135				NSI
4411000404	007040.0	0500505.0	404.0		105	11	16		NSI
11NMRC164	387210.6	6569535.6	401.8	-55	135	49	50	1	2.97
11NMRC165	387224.3	6569520.7	401.9	-55	135	7	10	3	5.05
11NMRC167	387253.1	6569492	400.3	-55	135	14	15	1	2.55
11NMRC173	387238.8	6569591.3	400.6	-55	135	52	53	1	4.78
						9	10	1	6.05
11NMRC184	387352.3	6569562.3	397.4	-55	135	18	19	1	1.16
						31	32	1	1.96
11NMRC186	387379.4	6569532.6	395.8	-55	135	17	20	3	3.05
11NMRC187	387313.2	6569713.2	398.1	-55	135	44	45	1	4.14
11NMRC188	387326.4	6569701.5	398.8	-55	135	1	2	ï	1.3
111100001	207502 5	6560700 4	207.2	FF	105	4	5	1	2.96
TINIVIRG204	301303.5	0009708.1	391.3	-05	135	34	30	2	3.30

	MCA					Enem	T.	Intervel.	Au Crada
	MGA	MGA				FIOIII	10	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						28	29	1	1.34
11NMRC211	387504	6569790.8	397.7	-55	135	31	32	1	2.51
						49	50	1	1.2
11NMRC215	387559.4	6569733.5	395.8	-55	135	18	19	1	1.84
						42	43	1	1.29
11NMRC217	388259.6	6570401.3	397.9	-60	135				NSI
11NMRC222	388308.9	6570393.8	397.3	-60	135	2	3	1	2.79
11NMRC224	388772.2	6569760.2	399.4	-60	155				NSI
11NMRC227	388799	6569771.4	398.6	-60	155				NSI
11NMRC232	388843.5	6569747.5	395.4	-60	155				NSI
11NMRC235	388806.4	6569903.6	392.3	-60	155				NSI
11NMRC230	300014.7	6560913.3	201.0	-60	155				NSI
11NMRC240	200040.9	6560705 F	201.7	-00	155	20	40	2	11 57
11NMRC243	388871.2	6569759.9	30/ 2	-00-	155	39	42	3	NSI
11NMRC251	388924.6	6569784 1	302.6	-00-	155				NSI
11NMRC253	388943 7	6569814.9	392.0	-00	155				NSI
11NMRC259	388964.3	6569844 9	392.1	-60	155				NSI
11NMRC262	388988.7	6569789.7	391.5	-60	155				NSI
11NMRC267	389027.7	6569699.7	391.5	-60	155	31	32	1	1.07
11NMRC268	389059.9	6569780.1	392.6	-60	155				NSI
11NMRC270	389076.9	6569745.3	391	-60	155	27	28	1	1.41
11NMRC271	389085.6	6569726.5	388	-60	155				NSI
11NMRC272	389122.8	6569788.7	390.5	-60	155				NSI
11NMRC274	389138.7	6569751.9	392.4	-60	155	20	21	1	2.37
11NMRC280	389299.6	6570243.8	391.1	-60	135				NSI
11NMRC284	389327	6570303.7	389.9	-60	135				NSI
11NMRC287	389367.4	6570260.6	383	-60	135	28	29	1	1.2
11NMRC292	389384	6570284.2	387.1	-60	135				NSI
11NMRC298	389467.1	6570190.9	385.3	-60	135				NSI
11NMRC299	389480.7	6570176.6	384.9	-60	135				NSI
11NMRC304	389525.8	6570215.8	386.5	-60	135				NSI
11NMRC307	389521.4	6570265.9	387.5	-60	135				NSI
11NMRC321	389554.3	6570648	397.8	-60	135				NSI
11NMRC323	389582	6570620.7	396.2	-60	135				NSI
12NMRC002	388164.7	6570282	399.4	-60	134.7				NSI
12NMRC009	388215.9	6570358.3	397.4	-60	134.7	12	14	2	3.24
1011100010	000047.0	0570444.0	000 5	00	40.4.7	16	19	3	3.1
12NMRC016	388217.6	6570444.2	396.5	-60	134.7				NSI
12NMRC017	200231.0	6570429.7	390.3	-60	134.7	12	44	1	1001
12NMRC020	399356.6	6570/34 0	395.4	-00	134.7	43	44	I	2.03
12NMRC030	388/13	6570375.5	30/ 8	-00-	134.7	46	47	1	1.46
12NMRC034	388384	6570490.9	393.5	-60	134.7	40	-11		NSI
12NMRC047	388623 7	6570450.4	395.6	-60	164.7				NSI
12NMRC051	388647.3	6570356	394.6	-60	164.7				NSI
12NMRC056	388676.3	6570369.6	395.5	-60	164.7				NSI
12NMRC057	388696.7	6570414.2	395	-60	164.7				NSI
12NMRC065	388879.1	6569741.2	395.8	-60	154.7				NSI
12NMRC069	388911.8	6569667.9	398.4	-60	154.7				NSI
12NMRC079	389234.2	6569837.5	388.4	-60	154.7				NSI
12NMRC081	389250.6	6569800.8	389.1	-60	154.7	44	45	1	1.55
12NMRC111	389456.1	6570575.6	398.8	-60	134.7				NSI
12NMRC114	389543.7	6570488.1	393.9	-60	134.7				NSI
12NMRC118	388404.4	6570572.9	393.5	-60	134.7				NSI
85WD1	386587 7	6569455 1	393 4	-60	314 6	111.8	112.96	1.16	2.98
		0000400.1	000.4	50	017.0	161.48	163.2	1.72	10.87
BMC8423	387668.6	6569317.1	390.7	-58.6	135.8	25	27	2	2.13
						36	39	3	3.9
BMD828	387613	6569363.3	391.9	-55.1	131.8	26.6	28	1.4	7.04
						39.74	41		NSI
BTC08-01	388353.3	6569847.9	398.4	-56.3	183.1	7	10	0	NSI
						23	32	Э	00.C

						_	_		
	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						46	47	1	8.94
						50	52	2	4.39
						69	70	1	1.78
						16	17	1	5.57
						23	24	1	6.46
						33	34	1	2.4
BTC08-04	388348.6	6569877.3	398.4	-55.5	181.1	43	44	1	1
						48	49	1	7.26
						51	52	1	3.77
		05004054				54	55	1	1.93
NMC009	386698.5	6560901	400.9	-54.7	357.8	1	3	2	2.29
	200442	6570026.0	207.2	-00.6	171.6	162	164	1	1.0
11/0/RC041	206443	6560991.0	297.3	-00	260.6	103	104	I	1.2
WB002	386705	6560042.0	307.9	-00	209.0				NSI
WB000	386625	6560860.0	309.3	-00-	209.0	12	45	3	2.2
WB008	387405	6569619.9	396.5	-00	315.4	42	43	3	NSI
WDC003	387511 7	6569432.6	395.0	-00	134.6	34	36	2	2.2
1120000	00/0111	0000402.0	000.0	00	104.0	17	18	1	1.8
WDC005	387474	6569467.1	396.1	-55	134.6	51	52	1	4.86
WDC006	387456.2	6569483	395.9	-55	134.6	65	66	1	1.22
WDC007	387437.5	6569500	395.9	-55	134.6	19	20	1	6.22
						2	7	5	11.33
WDC015	387517.7	6569528.4	396.7	-55	134.6	23	28	5	1.76
WDC016	387507.3	6569542.6	396.8	-55	134.6				NSI
WDC017	387481.6	6569578.4	397.5	-55	134.6				NSI
WDC025	387314	6569656.4	401.8	-55	134.6	41	42	1	1
WDC028	387256.5	6569710	400.1	-55	134.6				NSI
WDC029	387236.4	6569726.8	398.7	-55	134.6				NSI
WDC037	397426.0	6560793 3	300.7	55	134.6	25	26	1	1.08
WDC037	307420.9	0309703.3	399.1	-55	134.0	31	33	2	4.71
WDC041	387356.7	6569854.5	397.8	-55	134.6				NSI
						17	19	2	3.75
WDC045	387712.3	6569340 8	391.8	-56.3	135.3	21	23	2	1.89
	001112.0		00110	00.0	100.0	27	30	3	2.26
						53	54	1	1.24
WDC048	387575.4	6569485.2	395	-55	134.6	2	5	3	1.61
WDC059	387604.3	6569529.3	394.1	-55	134.6	23	24	1	1.4
WDC060	387586	6569553	394.9	-57.3	139.9	47	48	1	5.63
WDC061	387570.9	6569566.1	395.1	-55	134.6	17	19	2	1.84
WDC062	387540	6569526.2	395.9	-55	134.6	8	10	2	2.6
						28	33	5	2.12
WDC067	387583.1	6569434.2	394.2	-56.5	139.9	20	22	2	4.00
						10	11	1	7 1/
						10	16	1	1.14
WDC069	387596.4	6569372 3	392.8	-55	134.6	23	24	1	1.44
WECCOUS	307330.4	0000012.0	552.0	-00	134.0	28	30	2	6.05
						34	35	1	4.51
						0	1	1	17.5
						6	7	1	1.91
WDC073	387528.1	6569450.2	395.9	-56.9	149.6	19	20	1	2.69
						35	38	3	2.04
						7	12	5	6.37
WDC080	387678.1	6569539.8	396.6	-55.7	135.2	22	23	1	1.6
						29	31	2	1.31
WDC084	387600.4	6569599	394.9	-55.8	141.1				NSI
WDC085	387577.3	6569585.9	395.1	-55	134.6				NSI
WDC090	387459.8	6569460.4	395.7	-55	134.6	29	30	1	2.02
						41	45		NSI
WDC097	387732.1	6569288.2	390.6	-55	134.6	49	54	5	5.3
						56	57	1	3.17
WDC106	387765.3	6569398.4	393.7	-55	134.6	7	8	1	9.39

		MGA	MGA				From	То	Interval	Au Grade
	Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(a/t)
-					•		42	43	1	1.41
	WDC108	387696.7	6569465.4	395.3	-55	134.6	35	37	2	14.87
	WDC110	387940	6569368.2	391.5	-55	134.6		-		NSI
	WDC115	387757.5	6569543.4	397.4	-55	134.6	31	34	3	22.9
	WDC116	387680.7	6569618.6	396.9	-55	134.6				NSI
_							11	13	2	5
	WDC124	387642.2	6569342.8	391.2	-55	134.6	20	21	1	7.67
							28	30	2	6.39
	WDC126	207701 1	6560452.4	20E E	EG 0	107.0	5	6	1	50.4
	VVDC126	367761.1	0009402.4	395.5	-30.2	127.8	32	33	1	1.13
							14	17	3	1.79
	WDC130	387563.5	6569501.2	395.1	-56.7	136.7	20	21	1	6.13
							37	38	1	9.03
	WDC137	387611 3	6569448	393 3	-90	0	11	12	1	5.61
	11BO101	00/011.0	0000440	000.0	00	0	20	23	3	3.42
							9	10	1	2.39
							14	15	1	1.35
	WDC144	387719.9	6569368.5	392.6	-54.7	134	26	27	1	1.46
							29	31	2	1.74
							43	44	1	9.06
	WDC146	387738.2	6569386	393.3	-56	136.8	10	11	1	4.16
							47	50	3	3.5
	WDC157	387732	6569536.2	398	-55	134.6	43	44	1	4.7
	14/00400	007044 7	0500074	000.0		101.0	16	1/	1	1.46
	WDC166	387641.7	6569307.4	390.8	-55	134.6	26	27	1	1.51
	WDC167	207752	6560260.0	200.4	EE	124.6	22	40	2	1.7
	WDC167	207751.0	6560306.0	201	-00	134.0	33	37	4	14.95
	WDC108	387670.3	6560553 1	306.4	-00	134.0	47	49	2	14.65
	WD0175	301013.3	0303333.1	530.4	-00	134.0	35	36	1	1 17
	WDC179	387676.6	6569483.5	395.6	-55.6	135.8	55	59	4	1.17
	WDC185	387589.2	6569272.3	395	-54.6	134.6	00	00	-	NSI
	WDC190	387520.3	6569272.3	395	-53.1	134.6				NSI
	WDC191	387485.2	6569306.4	395	-56.7	134.6				NSI
	WDS026	388116.9	6569093.2	387.4	-55.8	135				NSI
	WDS029	387984.1	6569219	389.4	-61.8	135				NSI
	WDS030	387927.5	6569274.3	391	-62	135				NSI
	WDS043	388069.1	6568963.2	386.7	-59.7	135				NSI
_	WDS045	387984.4	6569048.1	389.3	-53	135				NSI
	WDS046	387941.3	6569088.1	390.1	-61.5	135				NSI
	WDS047	387899.1	6569132.9	390	-56.9	135				NSI
	WDS048	387861.9	6569174.8	388.8	-57.1	135	36	37	1	NSI
	WDS059	387901.2	6568962.8	389.2	-62	135				NSI
_	WDS061	387815.8	6569046.8	386.6	-60.1	135				NSI
	WDS063	387730.7	6569135.2	387.4	-63.4	135				NSI
	WDS073	387898.6	6568792.6	384.6	-55.9	135				NSI
	WDS078	387688.4	6569007	385.8	-55	135				NSI
	WDS080	387608.4	6569088.5	387.9	-56.4	135				NSI
							44	45	1	1.55
							47	48	1	5.96
	WPC020	388334.6	6569827.7	396.3	-60	171.6	67	68	1	1.21
							70	71	1	2.16
							84	85	1	4.08
			0505315		<i>c</i> -		42	45	3	12.32
	WPC021	388317.4	6569816.2	396.3	-60	171.6	50	52	2	6.42
							/0	/1	1	2.52
	MDCCCC	200224.0	0500000 4	202		450.0	10	12	2	13.65
	WPC022	388304.8	6569869.4	396	-55	159.6	32	<u>3</u> 3	1	1.92
	WPC100	200260.0	6560076 2	406.0	60	125.6	12	16	1	2.40
	WRC100	300309.2	6570021.0	400.9	-00	133.0	12	10	4	1.70
	WIXC 103	J004J1.Z	03/0031.9	402.3	-00	133.0	6	٥	n	2.06
	WRC104	388504.5	6570028.8	400.4	-60	171.6	10	12	2	2.90
									-	

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						18	20	2	2.31
		0500000 0			150.0	28	34	6	5.27
WRC109	388326	6569888.8	408.3	-60	150.6	40	42	2	1.41
WRC110	388347.8	6569825.7	404.2	-60	351.6				NSI
						8	10	2	3.69
WRC112	388423.2	6569846.9	407.2	-60	171.6	30	32	2	1.19
						34	36	2	5.26
WRC114	388452.6	6569893.2	410.2	-60	171.6	2	4	2	1.52
						8	10	2	1.82
WRC115	388452.5	6569924	412.1	-60	171.6	12	18	6	1.14
WRC120	388480.9	6569890.3	409.4	-60	171.6	20	24	4	13.71
						42	44	2	2.49
						20	22	2	4.20
WRC122	388384.4	6569875.5	408.5	-60	171.6	46	48	2	7.2
						58	60	2	1.02
						18	20	2	1.75
WRC123	388381.7	6569894.1	409.3	-60	171.6	36	40	4	3.16
WRC129	387610.7	6569550.4	393.3	-60	135.6	22	26	4	1.77
WDC424	207500 7	0500400.0	202.0	60	105.0	0	2	2	1.09
WRCI31	367596.7	6569490.9	392.8	-60	135.0	10	12	2	1.75
WRC135	387545.8	6569475 1	30/ 1	-60	135.6	20	22	2	4.78
	307343.0	0000470.1	554.1	-00	133.0	26	28	2	3.91
WRC137	388321.9	6569845	403.8	-60	171.6	21	22	1	1.31
						43	44	1	4.84
WRC146	388252.3	6569902.7	408.7	-60	135.6				NSI
WRC147	388240.2	6569917.8	408.6	-60	135.6				NSI
WRC151	388269.2	6569918.5	408.9	-60	135.6	26	24	0	2.99
WRC166	388529.8	6569900.3	402.8	-60	351.6	36	38	2	1.85
						20	24	4	4 45
WRC172	387649.1	6569447.5	391.9	-60	135.6	36	38	2	3.08
WRC175	387511.5	6569581.6	394.7	-60	135.6				NSI
	007500	0500500 7			105.0	28	30	2	2.66
WRC176	387529	6569563.7	394.3	-60	135.6	34	36	2	1.75
W/PC100	399403 2	6560802 8	409.9	60	171.6	11	19	8	3.27
WIXC190	300493.2	0309092.0	400.0	-00	171.0	28	30	2	14.64
WRC19E	388330.9	6569971.2	406.4	-60	134.6	16	18	2	1.77
WRC201	388533.3	6569872.1	398.9	-60	171.6				NSI
WRC202	388532.5	6569894.6	398.4	-60	171.6	0	3	3	3.17
WRC209	388472.9	6569854.6	406.8	-60	171.6	42	43	1	1.26
						40	47 20	1	2 79
WRC20E	388486.8	6569889.4	409.8	-60	150.6	28	32	4	5.55
						20	22	1	10
						24	28	4	10.47
WRC210	388468.2	6569889.9	409.6	-60	171.6	38	40	2	7.7
						62	63	1	2.26
WRC212	388464	6569924.7	411.8	-60	171.6	27	28	1	6.65
WRC213	388461.4	6569942.9	411.2	-60	171.6				NSI
WRC230	388401	6569823.7	406.3	-60	171.6	33	37	4	4.02
						26	30	4	1.48
WRC235	388375.2	6569825.7	405.4	-60	171.6	35	37	2	5.58
						40	41	1	1.75
						51	55	4	6.98
						36 36	30	3	5.30
WRC236	388368.3	6569883.2	407.6	-60	171.6	49	50	1	1.86
						52	54	2	1.22
WRC238	388350	6569822.6	403.3	-60	171.6	38	39	1	25.9
						12	13	1	1.2
WRC241	388311.7	6569871	405.8	-60	171.6	17	18	1	2.71
						33	34	1	3.7

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
						20	22	2	3.12
W/PC242	299240 E	6560002 F	406.0	60	171 6	35	40	5	1.95
WR0243	300340.5	0509902.5	400.9	-00	171.0	42	43	1	2.92
						46	47	1	1.48
WRC247	388332.6	6569840.9	404.8	-60	171.6	32	39	7	3.86
						47	50	3	5.42
						17	18	1	5.96
						35	36	1	10.18
WRC249	388302.8	6569856.3	404.1	-60	171.6	50	51	1	1.67
						54	55	1	2.11
						67	70	3	4.9
WRC258	388257 7	6569850 7	403.7	-60	171.6	07	70	5	NSI
W1(0250	300231.1	0000000.7	405.7	-00	171.0	0	1	1	1
						14	15	1	1.12
WRC259	388254.4	6569873.1	405.7	-60	171.6	41	42	1	28
						49	50	1	1.9
WRC264	388226.2	6569802.2	399.7	-60	171.6				NSI
WBC276	200207 4	6560940.6	404	60	474.0	22	24	2	6.1
WRC276	300397.4	0009849.0	404	-60	171.0	26	28	2	2.68
WRC279	388371.1	6569856.7	404	-60	171.6	26	28	2	1.46
WRC287	388323 9	6569939	409.9	-60	135.6	15	21	6	5
	000020.0		10010		100.0	27	28	1	1.69
WRC290	388349	6569935.2	409.9	-60	135.6	6	8	2	1.08
						18	19	1	1.03
						15	16	1	2.37
WRC292	388327.2	6569957.2	407.9	-60	135.6	19	20	1	5.79
						29	30	1	2.58
WPC206	200577.7	6570050.2	200.1	60	125.6	30	31	1	23.7
WRC290	300377.7	6560023.6	404.1	-00	150.6	34	36	2	1 22
WRC30	388510.5	6570011 7	398.1	-90	0	54	50	2	NSI
WRC35	389219	6569835.9	390	-60	339.6				NSI
						0	2	2	9.66
11/20/0		0500044.0	100		171.0	36	40	4	2.21
WRC49	388321.9	6569844.6	403	-60	1/1.6	46	49	3	29.81
						61	62	1	1.08
						12	14	2	1.3
WRC53	388494 4	6560001 5	109 5	-60	171.6	40	47	7	3.48
WIKO55	500454.4	0000001.0	403.5	-00	171.0	50	51	1	2.95
						54	56	2	2.81
WRC60	388451.4	6570047.3	399.2	-60	135.6				NSI
WRC61	388430	6570067.6	398.9	-60	135.6				NSI
WRC67	388218.8	6569856	402.9	-60	1/1.6				NSI
WRC69	388509.2	6570050.7	399.1	-60	135.6	6	10	6	7.62
WRC71	388626	6570010.3	398.5	-60	135.6	16	20	0	1.02
WRC74	388490 7	6569992	400.8	-60	175.6	10	14	2	4.40
WRC78	388668.8	6570034	397.1	-60	135.6	6	8	2	3.61
WRC82	388241.3	6569877.4	406.5	-60	171.6	52	54	2	1.53
WRC84	388324.2	6569827.6	405.4	-60	171.6	32	34	2	1.17
WRC86	388296.7	6569843.2	401.8	-60	171.6	44	46	2	2.68
						16	20	4	2.24
WRC87	388293.4	6569868.1	404.8	-60	171.6	46	48	2	1.05
						54	56	2	4.85
WRC90	388399.8	6569831.6	407.2	-60	351.6				NSI
WRC92	388445.9	6569867.2	412.1	-60	171.6	24	26	2	3.84
WRC95	388468.3	6569889.5	408.5	-60	171.6	16	24	8	10.59
						20	24	4	2
WRC98	388405.5	6569903.5	410.6	-60	171.6	28	30	2	1.82
						32	34	2	2.39

Hammer and Tap - 20% Representative Sample of Historic Drill Holes

	MGA	MGA				From	То	Interval	Au Grade
Hole ID	East	North	RL	Dip	Azimuth	(m)	(m)	(m)	(g/t)
11MMRC102	390267.7	6572663.2	401.6	-60	171.6				NSI
11MMRC103	390265.2	6572696.5	402.4	-60	175.6				NSI
11NMRC332	388919.2	6573405.7	388.5	-60	180				NSI
11NMRC336	388982.4	6573491.3	392.9	-60	180				NSI
11NMRC342	389042.6	6573488.7	391.4	-60	180				NSI
11NMRC346	389034.2	6573186.8	389.2	-60	180				NSI
11NMRC349	389102.5	6573488.2	390.5	-60	180				NSI
						9	10	1	1.7
11NMRC353	389101	6573411.5	391.3	-60	180	13	14	1	1.32
						10	19	3	1.23
							6	1	1.68
11NMRC359	389091.5	6573226	390.6	-60	180	10	11	1	1.93
11NMRC364	389090.3	6573128.2	390.8	-60	180				NSI
11NMRC367	389089	6573068.4	388.8	-60	180				NSI
11NMRC371	389162.7	6573446.5	391.3	-60	180				NSI
11NMRC375	389160.7	6573367.3	391.7	-60	180				NSI
11NMRC378	389158.2	6573307.5	391.7	-60	180	32	33	1	1.81
11NMRC379	389157.1	6573287.3	391.7	-60	180				NSI
						10	11	1	1.91
11NMRC381	389156.9	6573249.1	390.5	-60	180	19	20	1	3.77
						24	25	1	1.18
11NMRC383	389153.7	6573207.5	390.3	-60	180	26	27	1	1.56
						44	45	1	1.24
						- 3	17	3	1.00
11NMRC385	380152 5	6573160 3	300 1	-60	180	21	26	5	2.07
111111100000	303132.3	0373103.5	550.1	-00	100	30	31	1	2.86
						46	47	1	1.4
11NMRC390	389148.5	6573068.2	388.6	-60	180	35	36	1	1.74
11NMRC392	389214.7	6573185.4	389.5	-60	180				NSI
12HTDD001	389128.9	6573268.5	390.8	-60	181.7	17	19.7	2.7	1.37
97NMRC026	389834	6573958	399.5	-90	0				NSI
AHTRC004	389177.3	6573233.3	390.4	-61.1	45				NSI
AHTRC005	389105.6	6573231.2	390.5	-61	46.6	57	58	1	1.37
						13	15	2	1.96
						17	18	1	1.62
AHTRC006	389145.6	6573271.5	391.1	-60.1	47.6	22	23	1	4.01
						25	26	1	1.28
						31	32	1	1.29
AHTROOOG	380007 1	6573203 /	300.6	-60.3	45.1	30	30 //7	0	3.39
Annous	303037.1	0373233.4	550.0	-00.5	40.1	51	55	4	2.03
AHTRC019	389085.3	6573424.2	388.6	-61	46.4	0.		•	NSI
						46	47	1	5.89
HTC001	389124.6	6573197.3	390.3	-55.2	184.8	63	64	1	1.07
HTC002	200110.0	6572020.2	200.4	EE	101 0	14	15	1	10.8
HIC002	369116.6	0073238.3	390.4	-00	181.8	39	42	3	2.41
HTC007	389079.9	6573199.6	390.1	-55.7	180.1				NSI
HTC013	389061.8	6573356.8	390.7	-55.6	182.5	40	41	1	2.61
						54	55	1	1.16
HTC018	388974.6	6573313.2	390	-55.6	184.6				NSI
H1C020	388975.7	6573398.4	390.2	-55.7	186.5	20	11	2	NSI 6.69
NMD002	389076	6573307	390.1	-55	134.6	<u></u>	41	∠1	3.45
NMD006	388966 5	6573505.9	384.1	-59.7	50	70			NSI
					50	81	83	2	4.5
NMRC034	389011.6	6573278.1	389.6	-59.8	50	88	90	2	2.22
						97	100	3	1.06
NMRC036	388960.1	6573369.5	390.5	-60.5	49.4	86	87	1	23.7
NMPC037	388006 4	6573404 4	380 6	-60.3	46.0	95	98	3	2
INIVITCU37	JUUJJU.4	0070404.4	309.0	-00.3	40.9	101	104	3	12.56

						107	109	2	1.41
						115	116	1	11.9
NMRC042	388067 5	6573235.2	300 7	-60	44.6				NSI

Table 1 for Fingals Fortune Area Historic Exploration Results

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary	
Sampling techniques	JORC Code Explanation Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems.	Drilling has been completed by numerous parities over the life of the project. Air core, RAB, reverse circulation, and diamond drilling have all been completed. The majority of drilling was completed during the 1980's and early 1990s by Mistral Mines and the Mt Monger Gold Project JV. There is no reference to QAQC reported in annual reports for this period. Follow up drilling by Integra and Silver Lake Resources ("Silver Lake") indicate similar grades intercepted with acceptable QAQC reported. Mistral Mines completed the bulk of exploration drilling for the Fingals Resource in 1990 using a Schramm RC drill rig. All samples were collected from the cyclone in bags for each metre drilled. One metre samples were collected in bags from the cyclone and composite into a 2kg 3m composite sample using a riffle splitter. 1m resplit samples were taken where the 3m composite sample returned a grade above 0.2 g/t Au. Analysis was completed at Classic Laboratories and Analabs in Kalgoorlie by fully pulverising the sample before splitting. A 50g charge was analysed by fire assay. Mt Monger Gold Project drilled the majority of the grade control drilling in 1991 using a 3 ⁷ / ₈ inch reverse circulation roller bit with a hammer and cross over sub for hard vein materials. Samples were bagged in 1m intervals and a 4m composite was collected by either riffle or spear sampling. Where assay values of greater than 0.2 g/t Au were	
		All samples were crushed, dried and pulverised and analysed using aqua regia digest with AAS finish due to check samples indicating fire assay produced similar results.	
		Integra and Silver Lake sampling was completed in a similar manner with holes samples bagged on 1m intervals and composites of up to 4m completed. Anomalous intervals were then reassayed with the 1m samples.	
		Samples were tested in Genalysis Perth using a 10g charge and an aqua-regia digest with graphite furnace AAS finish	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer,	Reverse circulation drilling was completed using a face sampling percussion hammer.	
	core diameter, triple or standard tube, depth of diamond	Diamond drilling was oriented and logged geotechnically.	
	tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Historical reverse circulation drilling size is unknown.	
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Mt Monger Gold Project annual reports state that RC drilling at Fingals Fortune was dry with good recovery and no issues observed. There is no discussion of recovery for Integra and Silver Lake drilling. Diamond core was geologically and geotechnically logged with core loss noted during this process.	

Section 1: Samplin	ng Techniques and Data	
Criteria	JORC Code Explanation	Commentary
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Sample representativity was checked through the use of duplicates with acceptable results from Integra and Silver Lake. Repeats of assays for Mistral Mines did not indicate any issues.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade for drilling completed at Fingals Fortune.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	Logging of reverse circulation chips record lithology, mineralogy, texture, mineralisation, weathering, colour, alteration, veining and structure.
	and metallurgical studies.	Diamond core was geologically logged and sampled by for lithology, mineralogy, texture, mineralisation, weathering, colour, alteration, veining and structure.
	Whether logging is qualitative or quantitative in nature.	No historic core or chips are available.
	The total length and percentage of the relevant intersections logged	All relevant drilling has been logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	The historical sampling method for diamond core is not discussed in the annual reports. Diamond core represents a very small percentage of the overall samples within the project area. It is not considered to have a material impact on the global estimate presented.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All samples were bagged from the rig. Integra and Silver Lake samples were split on the rig, while Mistral and Mt Monger used a riffle splitter to take the 1m samples. Composites were created through both riffle splitters and spear sampling.
		There sampling was generally dry as per Mt Monger's annual reports.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The laboratory preparation of samples adheres to industry best practice. It is conducted by a commercial laboratory and involves oven drying, coarse crushing then total grinding.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All subsampling activities are carried out by commercial laboratory and are considered to be satisfactory.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	Integra Mining and Silver Lake used field duplicate samples to check the representativity of sampling. These were submitted for the same assay process as the original samples and the laboratory are unaware of such submissions. Mistral Mines had repeats completed with no issues identified in the review of the data.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes of between 2-3kg are considered to be appropriate for the deposit.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All samples are analysed by an external laboratory. Mistral Mines used a 50g fire assay, Mt Monger used aqua regia digest with AAS finish due to check samples indicating fire assay produced similar results, and Integra Mining used 10g charge and an aqua-regia digest with graphite furnace AAS finish.
		These methods re considered suitable for determining gold concentrations in rock and are a total digest method.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were reported in this announcement.

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary	
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Integra Mining and Silver Lake had a full QAQC program, with standards, blanks and field duplicates submitted with each batch of samples. There have been no issues observed within the QAQC data. Historic drilling had limited QAQC completed, limited to repeats of assays. Results were compared to close by modern drill holes and were similar in grade	
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts are verified by database, geological and corporate staff.	
	The use of twinned holes.	Diamond twinning has not been completed at this point. Close spaced drilling through the mined portion at grade control spacing provides insight into the continuity of mineralisation at short distance.	
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Data has been reviewed from the digital file to the hard copies of annual reports with limited errors observed at this point.	
	Discuss any adjustment to assay data.	No adjustments have been made to the assay data.	
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Survey control for Mistral and Mt Monger's drilling is not discussed in the annual reports and represents a risk to the Mineral Resource which is reflected in the classification.	
	Specification of the grid system used.	Mistral and Mt Monger operated on local grid for the Mt Monger area (SOL) that has been converted to MGA 94 Zone 51 for estimation. Integra and Silver Lake worked in MGA 94 Zone 51. All reported references are in MGA 94 Zone 51.	
	Quality and adequacy of topographic control.	Topography has been defined by a topographic survey of the area, with all collars corrected to the surface for consistency in elevation during estimation.	
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The nominal spacing ranges from 12.5m (northing) by 8.5m (easting) within the grade controlled area (mostly mined) to 50m by 50m at the extremities of the deposit.	
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	It is sufficient.	
Orientation of data in	Whether sample compositing has been applied.	No compositing has been applied.	
relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Exploration drilling has generally been drilled towards the east at -60 to intersect the mineralised zones, with a couple of holes drilled in different orientations. Grade control drilling (mostly now mined out) was drilled vertically. These orientations are acceptable given the low angle of dip the mineralisation has.	
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	All drilling from surface has been drilled as close to perpendicular to the predicted orientation of stratigraphy as possible. This has reduced the risk of introducing a sampling bias as far as possible. No orientation-based sampling bias has been identified in the data at this point.	
Sample security	The measures taken to ensure sample security.	The sample security of the historic drilling in unknown but is expected to have been acceptable.	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of all available information on sampling and procedures used from annual reports has been done.	

Section 2: Reportir	Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)			
Criteria	JORC Code Explanation	Commentary		
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as Joint Ventures, partnerships, overriding royalties,	The Fingals Fortune Mineral Resource is located on M26/357, M26/148, M26/248, and M26/364.		
		Mining lease M26/248 is granted is held until 2029 and is renewable for a further 21 years on a continuing basis.		
	native title interests, historical sites, wilderness or national	Mining lease M26/148 is granted is held until 2030 and is renewable for a further 21 years on a continuing basis.		
		Mining leases M26/357 and M26/364 are granted are held until 2033 and are renewable for a further 21 years on a continuing basis.		
		All production is subject to a Western Australian state government Net Smelter Return ("NSR") royalty of 2.5%.		
		M26/357 may be subject to a royalty of either \$1.5/ore tonne or 0.1 g/t Au ore tonne for 30% of ore that is treated or sold from the tenement.		
		There are no registered Aboriginal Heritage sites or pastoral compensation agreements over the tenements.		
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediment to obtaining a licence to operate exists and the tenements are in good standing.		
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Fingals Fortune was first identified by Geopeko in joint venture with Mistral Mines in 1983-1984 through a systematic soil geochemical sampling program. This was followed up with costeans, RAB and RC drilling. Geopeko did not perceive the discoveries to be of sufficient size and withdrew from the joint venture in 1986. Mistral Mines continued to explore and define Fingals Fortune, producing a feasibility study in the 1990.		
		During this time, the tenement directly south of Fingals Fortune (now M26/357) was lost to Mistral though an administrative error resulting in the pegging by a prospector.		
		Following Mistral Mines falling into receivership, the project was acquired by Ramsgate Resources, who formed the Mt Monger Gold Project JV with General Gold in 1991. M26/357 was repurchased from Bond Gold Australia and Dragon Resources in 1992.		
		The Fingals Fortune deposit was subsequently mined in 1992 and 1993 by the Mt Monger Gold Project JV, with minor exploration around the area continuing until divestment.		
		Since mining was completed, Exploration of the Fingals Fortune deposit has been sporadic with various companies drilling holes to test the potential of reopening the mine:		
		- Solomon Australia (1999-2000) drilled about 10-15 RC holes to test strike extensions on the mineralisation;		
		- AurionGold Exploration (2001-2002) drilled a couple of RC and diamond holes testing under the existing pit;		
		 Integra Mining drilled two campaigns in 2007-2009 and 2011-2012 testing mineralisation east of and also below the main pit; and 		

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)			
Criteria	JORC Code Explanation	Commentary	
		 Silver Lake drilled 4 holes in 2012-2013 testing southern extensions to the mineralisation. 	
Geology	Deposit type, geological setting and style of mineralisation.	The project area is situated along the axis of the Bulong Anticline, a major, upright, tight fold plunging towards the southeast. The geological sequence is comprised of mafic units of Hi-Mg basalts to pyroxenite gabbroic composition that occupy the core of the anticline, with bedding parallel intrusive dolerite sills and cross cutting quartz-feldspar porphyries.	
		The Fingals Fortune deposit is situated on the western limb of the anticline dipping at ~30-40 degrees to the southwest. Hi-Mg pillow basalts are positioned in the footwall of the deposit and structurally separated from overlying dolerite sills and basalts by a structural disconformity represented by a series of bedding parallel shears.	
		The shearing strikes at 315 - 320 degrees and display intense hydrothermal alteration with bleached sericite and pyrite with associated silicification and carbonate alteration. The shear zones anastomose with thicknesses ranging between $1m - 6m$ and are host to a series of stacked quartz veins that host mineralisation. The quartz veins within the shear zones are boudinaged with boudin necks plunging 60-70° to the northeast. Flat lying quartz veins are also developed as tensional structures between the thrust zones.	
		Northwest striking quartz-feldspar porphyry dykes post-date the mafic sequence although they exhibit signs of shearing and thus occur prior to the regional axial planer foliation fabrics and greenschist metamorphism.	
		A northeast (070°) striking fault that postdates the west dipping sericite shear zones occurs within the middle of the Fingals Fortune pits. This coincides with a change in strike of the shear zones and is associated with elevated gold grades.	
		A deep weathering profile exists across the deposit down to 60m in places and displays supergene mineralisation above 35m that occurs as multiple, locally stacked, very flatly west dipping mineralised shear sets associated with sericite schist and porphyry in mafic hosts.	
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length; and if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A table of significant intercepts for a representative sample all exploration or resource definition drilling is included in this announcement for all drilling within the Fingals Fortune area. As this was an actively mined area, it is impractical to list drilling information for all drill holes used. For this reason, grade control drilling results are not reported.	

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)			
Criteria	JORC Code Explanation	Commentary	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually Material and should be stated.	All aggregated zones are length weighted. No high-grade cuts have been used.	
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All intersections are calculated using a 1 g/t Au lower cut-off with maximum waste zones between grades of 1m.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, as no metal equivalent values have been reported.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All intercepts are reported as downhole depths as true widths are not yet determined.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body of the announcement.	
Balanced reporting	Where comprehensive reporting of all Exploration. Results are not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Due to the large size of the Fingals Gold Project database inherited by Black Cat, it is impractical to list every significant intercept for reporting purposes. A random selection of 20% of exploration holes has been included within Appendix A. Grade control has been excluded from reporting.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geophysical surveys including aeromagnetic surveys have been carried out by previous owners to highlight and interpret prospective structures in the project area. No geophysics was used in the production of the Mineral Resource.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling).	Black Cat plans to conduct an exploration program to confirm the current interpretation and target extensions to the currently modelled mineralisation.	

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)			
Criteria	JORC Code Explanation	Commentary	
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.		

Table 1 for Hammer and Tap Area Historic Exploration Results

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary	
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drilling has been completed by numerous parities over the life of the project. RAB, reverse circulation, and diamond drilling have all been completed.	
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any	Silver Lake completed industry standard QAQC on drilling at Hammer and Tap, with standards, blanks, and field duplicates inserted at regular intervals.	
	measurement tools or systems used.	While no QAQC has been explicitly stated within reports of Anglo Gold Ashanti's annual reports, there is discussion around repeatability of assay grades due to a high coarse gold component. This is discussed in the body of this announcement under additional information for the Hammer and Tap Resource.	
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Anglo Gold Ashanti collected the drill spoil direct from the cyclone in bags and laid in 10m lines. These bags were then riffle split into 1m samples and either 2m or 4m composites, with the composites being sent for analysis. No QAQC is detailed in the reports, however the reference to duplicates in discussions indicates at least a limited duplicate program was completed. Composites were sent to Analabs in Perth for analysis for Au by fire assay with AAS finish. Anomalous zones were resubmitted at 1m sample size for the same analysis.	
		Cortona Resources split the drill spoil through the cyclone into plastic bags and an accompanying 1m sample into a calico bag. Four-meter composite samples were collected by combining representative spear samples of the 1m drill spoils from the plastic bags. All 4m composite samples were assayed by the Amdel laboratory in Kalgoorlie. Samples were pulverized to >95% passing through a 75µm sieve. Gold was determined by aqua regia digest with a standard atomic absorption spectrometer ("AAS") finish. Anomalous zones were resampled using the 1m splits in calico bags and assayed by the Amdel laboratory in Kalgoorlie. Samples were pulverized to >95% passing through a 75µm sieve. Gold was determined by aqua regia digest with a standard atomic absorption spectrometer ("AAS") finish. Anomalous zones were resampled using the 1m splits in calico bags and assayed by the Amdel laboratory in Kalgoorlie. Samples were pulverized to >95% passing through a 75µm sieve. Gold was determined by 40g fire assay with a standard AAS finish. Limited standards were introduced into the process late in the drilling.	
		Silver Lake completed similar process to those detailed above, using 40g fire assay with AAS finish.	
		Diamond drilling was oriented so that structural measurements could be taken. While the sampling method of the diamond core is not discussed in historical reports, the small amount completed is not thought to have a significant influence on the global estimate.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg	Reverse circulation drilling was completed using a face sampling percussion hammer. The reverse circulation bit size is unknown.	
	core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond drilling was completed using NQ size in fresh rock.	

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary	
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Historic reverse circulation recovery is unknown.	
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Historic reverse circulation recovery is unknown.	
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no discussion within historic reports around recovery	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	Logging of reverse circulation chips record lithology, mineralogy, texture, mineralisation, weathering, colour, alteration, veining, and structure.	
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Diamond core has been geologically logged and sampled for lithology, mineralogy, texture, mineralisation, weathering, colour, alteration, veining, and structure. Structural measurements on the core support the	
	Whether logging is qualitative or quantitative in nature.	mineralogical interpretation.	
	Core (or costean, channel, etc) photography.	All selevent delling has been langed in full	
	logged	All relevant drilling has been logged in full.	
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond core was cut and half core taken for assay.	
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Reverse circulation sampling has been riffle split to 1m increments from the bagged drill spoil. Composite samples were spear sampled from the bags. There is no mention of wet samples within the historic reports, and as much of the mineralisation is hosted close to surface, it would be expected that most of the drilling would have been dry.	
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	As all samples were prepared by reputable commercial laboratories, it is assumed that samples were prepared to industry standard at the time.	
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All subsampling activities are carried out by commercial laboratory and are considered to be satisfactory.	
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	Silver Lake regularly took field duplicates as part of their QAQC. Analysis of duplicates indicates an acceptable amount of repeatability, however there is evidence of a high nugget within the mineralisation, as identified by Anglo Gold Ashanti in screen fire assay analysis indicating a high portion of coarse gold.	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes of 2-3kg are considered to be appropriate given the grain size of the material sampled. More modern techniques of analysis will be investigated in the future to determine if better repeatability can be achieved.	
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples are analysed by an external laboratory using a 40g to 50g fire assay with AAS finish. This method is considered suitable for determining gold concentrations in rock and is a total digest method.	
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used in this Myhree Resource.	
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether	Integra Mining and Silver Lake had a full QAQC program, with standards, blanks and field duplicates submitted with each batch of samples. There have been no issues observed within the QAQC data.	

Type, reference name/number, location and ownership

including agreements or material issues with third parties

Mineral tenement and land

tenure status

Section 1: Samplin	Section 1: Sampling Techniques and Data		
Criteria	JORC Code Explanation	Commentary	
	acceptable levels of accuracy (ie lack of bias) and precision have been established.		
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts are verified by database, geological and corporate staff.	
	The use of twinned holes.	No twinning of holes has been completed to date.	
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Logging is completed in the field on a table before being uploaded into an SQL database. Assay files are uploaded directly from the lab into the database. Historic drilling was provisionally check against the hard copies of annual reports on the DMPS website.	
	Discuss any adjustment to assay data.	No adjustments have been made to the assay data.	
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Silver Lake's collars are picked up by DGPS. Downhole surveys from both planned and magnetic readings downhole. Historic survey control is unknown.	
	Specification of the grid system used.	All work has been completed in the grid system GDA 1994 MGA Zone 51.	
	Quality and adequacy of topographic control.	Topography has been defined DGPS survey of the area. All collars have been projected to this surface.	
Data spacing and	Data spacing for reporting of Exploration Results.	The nominal spacing is 30m (northing) by 25m (easting).	
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	It is sufficient.	
Orientation of data in	Whether sample compositing has been applied.	No compositing has been applied	
relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Preliminary drilling at Hammer and Tap was oriented south-east at -60 dip. Silver Lake drilling was rotated to be drilled south at -60 dip based off an updated interpretation. This makes most of the drilling intersecting mineralized zones at close to perpendicular for the bulk of the deposit.	
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Most drilling from surface has been drilled as close to perpendicular to the predicted orientation of mineralisation as possible. This has reduced the risk of introducing a sampling bias as far as possible. No orientation-based sampling bias has been identified in the data at this point.	
Sample security	The measures taken to ensure sample security.	Sample security is not known for Hammer and Tap drilling.	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of all available information on sampling and procedures used from annual reports has been completed.	
Section 2: Reportin	ng of Exploration Results (Criteria listed in the	preceding section also apply to this section.)	
Criteria	JORC Code Explanation	Commentary	

The Hammer and Tap Mineral Resource is located on M26/352 and M26/834.

Section 2: Reporti	Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)			
Criteria	JORC Code Explanation	Commentary		
	such as Joint Ventures, partnerships, overriding royalties,	Mining lease M26/352 is granted is held until 2032 and is renewable for a further 21 years on a continuing basis.		
	park and environmental settings.	Mining lease M26/834 is granted is held until 2037 and is renewable for a further 21 years on a continuing basis.		
		All production is subject to a Western Australian state government Net Smelter Return ("NSR") royalty of 2.5%.		
	The security of the tenure held at the time of reporting along	There are no registered Aboriginal Heritage sites or pastoral compensation agreements over the tenements.		
	with any known impediments to obtaining a licence to operate in the area.			
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historic workings consist of small costines and trial pits, generally appearing to target paleo-alluvial gold. Along with these minor workings are a couple of shafts that appear to target potential bedrock mineralisation. Mining is assumed to have occurred over a period of 30-100 year ago.		
		Recorded drilling in the area has occurred since around 2001, with no clear history of drilling prior. Drilling consists of Reverse Circulation ("RC"), Rotary Air Blast ("RAB") and Diamond Core Drilling ("DD"), with no drilling having been completed by Black Cat to date. Anglo Gold Ashanti completed the first round of drilling in the early 2000's, targeting an interpreted north-east/south-west trending structure thought to be following bedding. This work was followed up by Corona Minerals in 2006, before Silver Lake acquired the tenements. A reinterpreted. This was tested with an extensive RC and diamond program, with the results used to produce the maiden Mineral Resource for Hammer and Tap. Little has been done to the tenements in the last 8-9 years.		
Geology	Deposit type, geological setting and style of mineralisation.	The area around Hammer and Tap consists of a dolerite underlying transported cover. There is a felsic unit to the west and ultramafic occurs to the south and east. Mineralisation is hosted within the dolerite in subvertical, east-west trending bucky sheeted guartz veins. These		
		veins, and the mineralisation, appear to be truncated at depth by a black shale unit.		
		A moderately shallow weathering profile exists across the deposit with oxide down to 40m in places. A transitional zone overlies fresh rock that from 10m to 60m below surface.		
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length; and 	A table of a representative sample of significant intercepts for all RC and diamond holes is included in this announcement for the Hammer and Tap area.		

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)		
Criteria	JORC Code Explanation	Commentary
	 if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually Material and should be stated.	All aggregated zones are length weighted. No high-grade cuts have been used, except for Resource estimation as discussed in the text.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All intersections are calculated using a 1 g/t Au lower cut-off with maximum waste zones between grades of 1m.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, as no metal equivalent values have been reported.
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results.	All intercepts are reported as downhole depths as true widths are not yet determined.
intercept lengule	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration. Results are not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Due to the large size of the Fingals Gold Project database inherited by Black Cat, it is impractical to list every significant intercept for reporting purposes. A random selection of 20% of exploration RC and diamond holes has been included within Appendix A.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater.	Geophysical surveys including aeromagnetic surveys have been carried out by previous owners to highlight and interpret prospective structures in the project area.

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)		
Criteria	JORC Code Explanation	Commentary
	geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling).	Black Cat plans to conduct an exploration program to confirm the current interpretation and in fill the drilling with the goal of converting some of the Mineral Resource to Indicated.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	

Table 1 for Imperial and Majestic Area Historic Exploration Results

Section 1: Sampling Techniques and Data			
Criteria	JORC Code Explanation	Commentary	
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Both RC and Diamond drilling methods were utilised in the Imperial and Majestic drilling dataset	
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Recent reverse circulation and diamond drilling undertaken by Silver Lake provides high quality representative samples that are carried out to industry standard and include QAQC standards. All samples are weighed in the laboratory. Historical drilling and sampling is assumed as industry standard quality.	
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple	Drill cuttings are extracted from the RC return via cyclone. The underflow from each 1m interval is transferred via bucket to a 75/12.5/12.5% riffle splitter, delivering approximately three kilograms of the recovered material into calico bags for analysis.	
	 (eg 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	1m samples were collected throughout the entire drill hole. 3m composites samples were collected with a spear, in low priority areas, and these samples were submitted for analysis. Any composite assays returning anomalous intersections were resampled using the 1m sample collected during drilling.	
		All NQ2 diamond holes have been half-core sampled over prospective mineralised intervals determined by the geologist.	
		Within fresh rock, core is oriented for structural/geotechnical logging wherever possible. In oriented core, one half of the core was sampled over intervals ranging from 0.3m to1.2m and submitted for fire assay analysis.	
		The remaining core, including the bottom of-hole orientation line, was retained for geological reference and potential further sampling such as metallurgical test work. In intervals of un-oriented core, the same half of the core has been sampled where possible, by extending a cut line from oriented intervals through into the un- oriented intervals. The lack of a consistent geological reference plane, (such as bedding or a foliation), precludes using geological features to orient the core.	
		All diamond holes were surveyed during drilling with down hole single shot cameras, and the majority of drill holes were resurveyed at the completion of the drill hole using a collar orientated Gyro Inclinometer at 10m intervals.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	NQ2 diamond drilling was used during drilling operations at 'Imperial and Majestic. Previously completed RC drilling was carried out using a face sampling hammer.	
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC sample recovery is recorded at 1m intervals to assess that the sample is being adequately recovered during recover drilling operations. A subjective visual estimate is used and recorded as a percentage. Sample recovery is	

Section 1: Sampling Techniques and Data		
Criteria	JORC Code Explanation	Commentary
		generally good, and there is no indication that sampling presents a material risk for the quality of the evaluation of the Imperial and Majestic deposit.
		For diamond drilling recovered core for each drill run is recorded and measured against the expected core from that run. Core recovery is consistently very high, with minor loss occurring in regolith and heavily fractured ground. There is no indication that sampling presents a material risk for the quality of the evaluation of the Imperial and Majestic deposit.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no indication that sampling presents a material risk for the quality of the evaluation of the Imperial and Majestic deposit.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	All RC chips and diamond drill cores have been geologically logged for lithology, regolith, mineralisation and alteration utilising Silver Lake's standard logging code library.
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Diamond core has also been logged for geological structure.
	Whether logging is qualitative or quantitative in nature.	Sample quality data recorded includes recovery, sample moisture (ie whether dry, moist, wet or water injected) and sampling methodology.
	Core (or costean, channel, etc) photography.	Both diamond drill core and RC chip trays are routinely photographed and digitally stored for future reference.
		Diamond drill holes are routinely orientated, and structurally logged with orientation confidence recorded. All drill hole logging data is digitally captured and the data is validated prior to being uploaded to the database.
		Data Shed has been utilised for the majority of the data management of the SQL database. The SQL database utilises referential integrity to ensure data in different tables is consistent and restricted to defined logging codes.
	The total length and percentage of the relevant intersections logged	All relevant drilling has been logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	All NQ2 diameter core is sawn half core using a diamond-blade saw, with one half of the core consistently techniques and taken for analysis. The un-sampled half of diamond core is retained for check sampling if required.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Drill cuttings are extracted from the RC return via cyclone. The underflow from each 1m interval is transferred via bucket to a 75/12.5/12.5% riffle splitter, delivering approximately three kilograms of the recovered material into calico bags for analysis. Sample moisture (i.e. whether dry, moist, wet) is logged.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	All samples are sorted and dried upon arrival to ensure they are free of moisture prior to pulverising. Samples that are too coarse to fit directly into a pulverising vessel will require coarse crushing to nominal 10mm. Samples >3kg are sub split to a size that can be effectively pulverised.
		Representative sample volume reduction is achieved by either riffle splitting for free flowing material or rotary splitting for pre-crushed (2mm) product. All samples are pulverised utilising 300g, 1,000g, 2,000g and 3,000g grinding vessels determined by the size of the sample. A grind quality target of 85% passing 75µm has been

Section 1: Samplin	ng Techniques and Data	
Criteria	JORC Code Explanation	Commentary
		established and is relative to sample size, type and hardness. MinAnalytical utilises low chrome steel bowls for pulverising. On completion of analysis all solid samples are stored for 60 days.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All subsampling activities are carried out by commercial laboratory and are considered to be satisfactory.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	Dry crushed or fine samples are pulverised to produce a homogenous representative sub-sample for analysis. Min- Analytical inserted blanks and standards at a ratio of one in 20 samples in every batch. Every 20 th sample was selected as a duplicate from the original pulp packet and then analysed. Repeat assays were completed at a frequency of one in 20 and were selected at random throughout the batch. In addition, further repeat assays were selected at random by the quality control officer, the frequency of which was batch dependent.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample size is considered appropriate for the grainsize of the material being sampled.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All drill hole samples were analysed by Min-Analytical, using 50g fire assay using Atomic Absorption Spectrometry (FA50AAS). This method is considered suitable for determining gold concentrations in rock and is a total digest method.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used in this announcement.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	For RC chips, field duplicates, standards and blanks are regularly inserted into the sample stream to ensure sample quality and assess analysed samples for significant variance to primary results, contamination and repeatability. Data produced by Min-Analytical is reviewed and compared with the certified values to measure accuracy and laboratory tests precision. Selected anomalous samples are re-digested and analysed to confirm results.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	On receipt of assay results from the laboratory the results are verified by the Data Manger and by geologists who compare results with geological logging.
		No independent or alternative verifications are available.
	The use of twinned holes.	No twining of holes is known of.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All drill hole data was digitally captured using Logchief software and the data is validated prior to being uploaded to the database. Data Shed (SQL database) has been utilised for the majority of the data management. The SQL database utilises referential integrity to ensure data in different tables is consistent and restricted to defined logging codes.
	Discuss any adjustment to assay data.	No adjustments have been made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation	Collar coordinates for surface RC and diamond drill-holes were generally determined by either RTK-GPS or a total station survey instrument.
		Historic drill hole collar coordinates have been surveyed using various methods over the years using several grids. Recent diamond holes were surveyed during drilling with down-hole single shot cameras and then at the end of the hole by Gyro-Inclinometer at 10m intervals. Holes not gyro-surveyed were surveyed using Eastman single shot cameras at 30m intervals.

including agreements or material issues with third parties

such as Joint Ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national

park and environmental settings.

Section 1. Sampling Techniques and Data

tenure status

Section 1. Sampling rechniques and Data		
Criteria	JORC Code Explanation	Commentary
		Recent RC holes were surveyed during drilling with down-hole single shot cameras and then at the end of the hole
		by Gyro-Inclinometer at 10m intervals. Holes not gyro-surveyed were surveyed using Eastman single shot cameras
		at 30m intervals.
	Specification of the grid system used.	All drilling activities and resource estimations are undertaken in MGA 94 (Zone 51) grid.
	Quality and adequacy of topographic control.	Topographic control is generated from RTK GPS. This methodology is adequate for the resources in question
Data spacing and	Data spacing for reporting of Exploration Results.	Drilling completed in 2015 has in-filled the historic' drilling to approximately a 10m x 20m spacing. Recent drilling has
distribution		been completed to an average depth of 100 vertical meters below surface.
	Whether the data spacing and distribution is sufficient to	It is sufficient.
	establish the degree of geological and grade continuity	
	appropriate for the Mineral Resource and Ore Reserve	
	estimation procedure(s) and classifications applied.	
Orientation of data in	Whether sample compositing has been applied.	Drill hole data has been composited downhole to 1m prior to the geostatistical analysis, continuity modelling and
relation to geological		grade estimation process. The compositing has been run within the respective mineralisation domains using these
structure		as hard boundaries with a variable sample length method, which keeps the sample intervals as close to a set length
		(1m) as possible, in this case with no residuals.
	Whether the orientation of sampling achieves unbiased	The majority of drilling is orientated to intersect mineralisation as close to normal as possible. The chance of bias
	sampling of possible structures and the extent to which this	introduced by sample orientation is considered minimal.
	is known, considering the deposit type.	
	If the relationship between the drilling orientation and the	The chance of bias introduced by sample orientation is considered minimal.
	orientation of key mineralised structures is considered to	
	have introduced a sampling bias, this should be assessed	
	and reported if material.	
Sample security	The measures taken to ensure sample security.	Min-Analytical checks the samples received against the submission form and notify Silver Lake of any missing or
		additional samples. Following analysis, the pulp packets, pulp residues and coarse rejects are held in their secure
		warehouse. On request, the pulp packets are returned to the Silver Lake warehouse on secure pallets where they
		are documented for long term storage and retrieval.
Audits or reviews	The results of any audits or reviews of sampling techniques	Field quality control and assurance has been assessed on a daily, monthly and quarterly basis.
	and data.	
Section 2: Reporting	ng of Exploration Results (Criteria listed in the	preceding section also apply to this section.)
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land	Type, reference name/number, location and ownership	There is no known heritage or environmental impediments over the leases covering the Mineral Resource and Ore

Reserve. The tenure is secure at the time of reporting.

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)		
Criteria	JORC Code Explanation	Commentary
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediments exist to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Imperial and Majestic deposit has been variously drilled by a number of past explorers, including Integra Mining and Newcrest Mining.
Geology	Deposit type, geological setting and style of mineralisation.	Imperial and Majestic are located at the southern end of the Kurnalpi Terrane (formerly the Gindalbie Terrane) on the western limb of the Bulong Anticline.
		The Imperial and Majestic area lies to the west of the Juglah Monzogranite - an oval-shaped intrusion emplaced into a domed sequence of felsic to intermediate volcaniclastic and volcanic rocks.
		The Majestic and Imperial deposits occur within a small quartz diorite/tonalite stock to the immediate west of the Juglah Monzogranite.
		Quartz Diorite is the dominant lithology at Imperial and hosts the mineralisation.
		Au mineralisation is associated with crystalline and disseminated sulphides, dominantly chalcopyrite and pyrite.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length; and if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the competent Person should clearly explain why this is the case. 	A table of significant intercepts for a representative sample all exploration or resource definition drilling is included in this announcement for all drilling within the Imperial Majestic area. As this was an actively mined area, it is impractical to list drilling information for all drill holes used. For this reason, grade control drilling results are not reported.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually Material and should be stated.	All results presented are weighted average.
		No high-grade cuts are used.
		Reported diamond and RC drill results have been calculated using a 1 g/t Au lower cut-off grade with a minimum intersection width of 0.3 m.
	Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and	A total up to 1.0m of internal waste can be included in the reported intersection.

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)		
Criteria	JORC Code Explanation	Commentary
	some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are stated.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	Unless indicated to the contrary, all results reported are down hole width. Given restricted access in the pit environment at Imperial and Majestic, some drill hole intersections are not normal
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	to the orebody. Where possible drill intersections have been designed to intersect mineralisation at the optimal angle.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been provided in previous announcements.
Balanced reporting	Where comprehensive reporting of all Exploration. Results are not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Due to the large size of the Fingals Gold Project database inherited by Black Cat, it is impractical to list every significant intercept for reporting purposes. A random selection of 20% of exploration RC and diamond holes has been included within Appendix A.
Other substantive	Other exploration data, if meaningful and material, should be	There is no other substantive exploration data associated with this announcement.
exploration data	reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Ongoing resource evaluation and modelling activities will be undertaken to support the development of mining operations.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	

Table 1 for Wombola Area Historic Exploration Results

Section 1: Sampling Techniques and Data		
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drilling has been completed by numerous parities over the life of the project. Air core, RAB, reverse circulation, and diamond drilling have all been completed.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Reverse circulation and diamond drilling undertaken by Silver Lake provides high quality representative samples that are carried out to industry standard and include QAQC standards. All samples are weighed in the laboratory. Other historical drilling and sampling is assumed as industry standard quality.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple	Six diamond holes were drilled from surface using HQ rods. Once competent fresh rock was intersected holes reduced to NQ2. HQ was quarter cored for sampling and NQ2 core was cut in half and sampled down to 20cm and intervals were aligned with geological boundaries. Diamond core was oriented using a reflex tool.
	(eg reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems.	RC drilling was conducted with a ROC L8 track mounted rig. Drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 40g charge for Fire Assay. Every metre of every hole was assayed.
		Standards, blanks and duplicates were put in the sample submissions every 25m. Blanks were not certified blanks but were composed of barren RC material (or core for diamond holes) from lithologies known to be barren.
	Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg	Reverse circulation for the most part. Historic holes are typically 100m with regular down hole surveys. Recent holes are typically 30m with a collar shot and end of hole shot to determine dip and azimuth.
	face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond holes – HQ in oxide down to NQ2 in fresh rock oriented where possible.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core loss is minimal in total. Basic recordings of core recovery were included in logging. All core was measured and core loss recorded on the core blocks. This information was recorded in core logging.
		Recovery from RC samples was not investigated during grade control.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Sample recovery and representivity were maintained through industry standard maintenance of the cone splitter and verified through the use of duplicate samples.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade for drilling.
Logging	Whether core and chip samples have been geologically and	100% of core is logged using an onsite logging system that captures lithology, mineralisation, structure and recovery.
		All core is photographed wet and dry.

Section 1: Sampling Techniques and Data		
Criteria	JORC Code Explanation	Commentary
	appropriate Mineral Resource estimation, mining studies and	The diamond core is only sampled in areas of interest with a 5m buffer either side.
	metallurgical studies.	All RC chips are photographed wet.
	Whether logging is qualitative or quantitative in nature.	All grade control samples are assaved but Resource holes may be speared in to 4m composites in a first pass.
	Core (or costean, channel, etc) photography.	
	The total length and percentage of the relevant intersections	All relevant drilling has been logged in full.
	logged	Historic holes were assayed but rarely logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	NQ2 core is sawn in half. The remaining half core is not sampled and is stored on site. Standards are placed every 25 samples
	If non-core, whether riffled, tube sampled, rotary split, etc and	Resource RC holes are speared in a first pass. Any grade >0.2 g/t Au is resampled using the 1m calicos.
	whether sampled wet or dry.	Grade control RC holes are 1m sampled throughout. Samples and duplicates were split on the rig using the cyclone.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The laboratory preparation of samples adheres to industry best practice. It is conducted by a commercial laboratory and involves oven drying, coarse crushing then total grinding to a size of 90% passing 75µm. Historic preparation of
	, , , ,	samples is unknown but assumed as industry standard.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All subsampling activities are carried out by commercial laboratory and are considered to be satisfactory.
	Measures taken to ensure that the sampling is representative	Standard/ blanks and duplicates are put in the sequence every 25m.
	for field duplicate/second half sampling.	Standards are sourced from Geostats and are made up on site.
		Representative standards are used to match oxidation state of the rock.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Laboratory duplicates are comparable to the original results
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All samples are assayed using a 40g Fire Assay charge from a third party external laboratory.
	For geophysical tools, spectrometers, handheld XRF	No geophysical tools were used in this Resource update.
	instruments, etc, the parameters used in determining the	
	times, calibrations factors applied and their derivation, etc.	
	Nature of quality control procedures adopted (eg standards,	Certified standards, non-certified blanks and duplicates are placed every 25 samples from RC samples.
	blanks, duplicates, external laboratory checks) and whether	Certified standards are placed every 25 samples in core.
	have been established.	Every certified standard must pass within two standard deviations or the batch is investigated further
Verification of sampling and	The verification of significant intersections by either	RC and diamond drilling are verified by the geologist before importing into the main database (Datashed).
assaying	independent or alternative company personnel.	
	The use of twinned holes.	Several historic holes from various drill programs have been twinned generally with good correlation.

Section 1: Sampl	ling Techniques and Data	
Criteria	JORC Code Explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	RC and diamond drilling are verified by the geologist before importing the data into the main database, then by comparing drillhole trace and location visually in drillhole trace form.
		Data is fixed in main database when discovered.
		A database check was conducted on all new data from original source by spot checking collars and downhole surveys.
	Discuss any adjustment to assay data.	No adjustments have been made to the assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Old drill holes are randomly ground truthed by survey to verify the collar location.
	Specification of the grid system used.	All data is in national grid called NAT.
	Quality and adequacy of topographic control.	Topography has been defined by an aerial drone survey, corrected to known points on the ground. All collars are RTK GPS and verified against this topography.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	RC and diamond drilling (NQ2) is spaced at 15m x 15m to provide an Indicated level Resource estimate. Grade control drilling was generally completed on a 7.5m x 7.5m grid.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	It is sufficient.
Orientation of data in relation to geological	Whether sample compositing has been applied.	All samples are composted to 1m within the domains. Generally the ore veins are very thin and only one sample is collected within the drillhole.
structure	Whether the orientation of sampling achieves unbiased	A 60 degree angle of core to vein orientation is the typical drillhole design.
	is known, considering the deposit type.	Where possible core was bisected to minimise sample bias.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling is designed to cross the ore structures close to perpendicular as possible. Highly oblique drillholes are not designed.
Sample security	The measures taken to ensure sample security.	Samples are either driven to the laboratory directly by the geologist or field assistant or samples are dropped at the company owned mill (remote location) and picked up by the laboratory's personnel within the hour.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None completed at time of reporting.

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)		
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties	The mining operations for the Wombola Dam and Wombola Pit Project, occur on three granted MLs – M26/802, M26/0059, M26/0791 and M26/642 and are 100% owned by Black Cat Syndicate.
	such as Joint Ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	They are all situated in the City of Kalgoorlie – Boulder Shire and are located 50km south east of Kalgoorlie in the Eastern Goldfields district of Western Australia.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Wombola Pit was mined by Croesus Mining NL from September 1988 until February 1989 and Wombola Dam was mined by Silver Lake from September 2011 until February 2012. All the mine leases are held in good stead, with sufficient length of tenure to completely mine and process the known orebody. There are no registered heritage sites on these tenements. The mine operates under several environmental agreements with the Western Australian state government. A royalty is paid to the state government based on gold ounces produced.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Gold was discovered in the general Wombola Area in 1906 and gold production continued until 1919. A total of 6,794oz of gold was produced during this period.
		Modern exploration commenced between 1966 and 1976 for nickel mineralisation by BHP but was largely unsuccessful.
		In 1986 Croesus Mining NL gained control over the entire area of known mineralisation and completed a large scale drilling program of ~440 RAB drillholes, 300 RC drillholes and a single diamond drillhole.
		A small scale mining operation was undertaken between September 1988 and February 1989 at Wombola pit for 87,000t of ore at 2.86 g/t Au.
		Numerous companies continued small scale exploration until 2005. These included Delta Gold NL; CIM Resources NL; AMX Resources; AngloGold (Formally Acacia Resources Ltd); and Alcaston Mining NL.
		In 2005 the project was purchased by Wombola Gold Pty Ltd (a subsidiary of Cortona Resources Limited). Resource extents were tested in a 24 drillhole program that infilled the majority of the deposit to a 25m x 25m grid. Resource calculation were then commissioned by Cortona and completed by Resource Evaluations Ltd in 2006 and 2007.
		The project was purchased by Silver Lake in 2010 and a close spaced drilling grade control type program was completed between February 2011 and March 2011. This infilled the main Wombola Dam orebody to a 7.5m x 7.5m spaced drill pattern.
		A small scale mining operation was undertaken between September 2011 and February 2012. Total production is reported as 280,900t at 1.8 g/t for 16,160 oz of gold.
		Drilling and sampling carried out prior to Cortona Resources Limited provided limited data available on QAQC and as such is removed from Resource estimations.
Geology	Deposit type, geological setting and style of mineralisation.	The Wombola area comprises a series of ultramafic and mafic metavolcanic and intrusive rocks, in addition to clastic metasedimentary rocks. The sequence is on the western limb of the Bulong Anticline, an upright, tight fold plunging moderately to the southeast. The rocks have been locally overprinted by a retrograde chlorite-sericite-carbonate-quartz alteration assemblage.

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)			
Criteria	JORC Code Explanation	Commentary	
		The gold mineralisation at Wombola and at most other prospect areas occurs in sheeted, east northeast striking quartz veins which are preferentially developed in the Wombola Dolerite. The quartz veins dip steeply to the northwest and are associated with narrow wallrock alteration selvages dominated by carbonate and sericite.	
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length; and if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the competent Person should clearly explain why this is the case. 	A table of significant intercepts for a representative sample all exploration or resource definition drilling is included in this announcement for all drilling within the Fingals Fortune area. As this was an actively mined area, it is impractical to list drilling information for all drill holes used. For this reason, grade control drilling results are not reported.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually Material and should be stated.	All aggregated zones are length weighted. No high-grade cuts have been used, except for Resource estimation as discussed in the text.	
	Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All intersections are calculated using a 1 g/t Au lower cut-off with maximum waste zones between grades of 1m.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, as no metal equivalent values have been reported.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All intercepts are reported as downhole depths as true widths are not yet determined.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a	Appropriate diagrams have been included in the body of the announcement.	

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)			
Criteria	JORC Code Explanation	Commentary	
	plan view of drill hole collar locations and appropriate sectional views.		
Balanced reporting	Where comprehensive reporting of all Exploration. Results are not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Due to the large size of the Fingals Gold Project database inherited by Black Cat, it is impractical to list every significant intercept for reporting purposes. A random selection of 20% of exploration holes has been included within Appendix A. Grade control has been excluded from reporting.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data associated with this announcement.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Black Cat plans to conduct an exploration program to confirm the current interpretation and target extensions to the currently modelled mineralisation	